Please use this identifier to cite or link to this item: http://ir.lib.seu.ac.lk/handle/123456789/5986
Title: A machine learning algorithm for classification of mental tasks
Authors: Manoharan, Hariprasath
Abdul Haleem, Sulaima Lebbe
Shitharth, S.
Kshirsagar, Pravin R.
Tirth, Vineet
Thangamani, M.
Raman Chandan, Radha
Keywords: Contemporary
brain-computer interface
Issue Date: 17-Feb-2022
Publisher: Elsevier
Citation: Computers & Electrical Engineering Volume 99, April 2022, 107785
Abstract: In this article, a contemporary tack of mental tasks on cognitive parts of humans is appraised using two different approaches such as wavelet transforms at a discrete time (DWT) and support vector machine (SVM). The put forth tack is instilled with the electroencephalogram (EEG) database acquired in real-time from CARE Hospital, Nagpur. Additional data is also acquired from a brain-computer interface (BCI). In the working model, signals from the database are wed out into different frequency sub-bands using DWT. Initially, updated statistical features are obtained from different frequency sub-bands. This type of representation defines the wavelet co-efficient which is introduced for reducing the measurement of data. Then, the projected method is realized using SVM for segregating both port and veracious hand movement. After segregation of EEG signals, results are achieved with an accuracy of 92% for BCI competition paradigm III and 97.89% for B-alert machine.
URI: https://doi.org/10.1016/J.COMPELECENG.2022.107785
http://ir.lib.seu.ac.lk/handle/123456789/5986
ISSN: 0045-7906
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
A machine.pdf159.73 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.