Please use this identifier to cite or link to this item:
http://ir.lib.seu.ac.lk/handle/123456789/4136
Title: | Mapping and change detection of mangroves along the coastline of Ampara district from 2004 to 2019 |
Authors: | Madurapperuma, B. D. Zahir, I. L. M. Nijamir, K. Iyoob, A. L. |
Keywords: | Mangrove Change detection Classification MaxEnt |
Issue Date: | 18-Dec-2019 |
Publisher: | Faculty of Arts and Culture South Eastern University of Sri Lanka. |
Citation: | 8th South Eastern University International Arts Research Symposium -2019. 18th December 2019. South Eastern University of Sri Lanka, Oluvil, Sri Lanka. |
Abstract: | Mangroves provide numerous ecological and biophysical services in the tropics and subtropics that support flood regulation, carbon sequestration, and reducing erosion from storm surges. Remote sensing satellite imagery provides valuable information for mangrove mapping and monitoring. The objective of this study is to detect the spatio-temporal changes in mangroves in Ampara District from 2004 to 2019 based on Landsat data. A semi-automated image classification technique was used to delineate and detect changes of mangrove vegetation in the Ampara District from 2004, 2009 and 2019 using Landsat 5 and 8 images. The multi-index approach was constructed using: (i) water masking using Normalized Difference Water Index (NDWI), (ii) mangrove detection using red and shortwave infrared (SWIR), SWIR and near-infrared (NIR) band ratios, Normalized Difference Vegetation Index (NDVI), (iii) mangrove classification using Principle Components Analysis (PCA) and an unsupervised classification. The historic Google Earth imagery was used to validate the classified mangrove habitats. The results estimated that the total mangroves in Ampara District were 424 ha in 2004, 355 ha in 2009, and 569 ha in 2019. The total mangrove habitat which was estimated through available land-use/cover maps was 770 ha. In addition, habitat suitability of mangroves for current and future (year 2050) climate change scenarios was mapped using a maximum entropy (MaxEnt) model and bioclimatic variables. The current MaxEnt was resulted in 11% area in high habitat suitability (H) and a moderately suitable (M) class in each. While the suitable habitat projection for the year 2050 was 11% (H) and 16% (M). In conclusion, a loss of mangrove was observed five years later in tsunami, and a gain of mangrove was occurred after 15 years resulting in best land management practices. |
URI: | http://ir.lib.seu.ac.lk/handle/123456789/4136 |
ISBN: | 978-955-627-203-1 |
Appears in Collections: | SEUIARS - 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Abstract_book_SEUIARS2019 - Page 59.pdf | 82.79 kB | Adobe PDF | View/Open | |
Full paper 046.pdf | 939.52 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.