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Abstract 

 

The technology sector’s rapid growth and increasing market concentration have 

fundamentally altered market dynamics and volatility patterns among leading firms. This 

study investigates the volatility spillovers among nine major US technology companies. 

Specifically, the study captures the interdependence and the level of influence 

corresponding to the stock return volatilities of these firms on one another. Apple, 

Amazon, Google, IBM, Intel, Meta, Microsoft, Nvidia, and Tesla were sourced from 

Investing.com. The daily data was collected between April 1, 2014, and May 31, 2024. 

We apply the Connectedness Approach framework to the time-varying parameter vector 

autoregression model. This methodology estimates several metrics: the total 

connectedness index, directional measures of volatility transmission, and pairwise 

relationship indicators. The analysis shows that Microsoft and Google emerge as 

dominant net transmitters, while IBM and Intel function as primary receivers. Tesla's 

receiver status despite large market capitalization confirms that ecosystem positioning 

rather than market size determines transmission hierarchy. The Total Connectedness 

Index shows significant variation during market crises, intensifying spillovers while 

preserving network structure. Amazon and Nvidia demonstrate variable transmission 

capacity.  This study contributes to the literature by providing a comprehensive analysis 

of time-varying volatility transmission networks among leading technology firms, 

revealing systemic risk patterns and network effects crucial for investment and 

regulatory decision-making. 
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1. Introduction 
 

The last 10 years have seen the technology industry go through a period of unprecedented 

growth and market concentration, and as such, redefine the very nature of market forces and 

volatility between the key players of this industry. This sharp transformation indicates a 

paradigm adjustment in the modern financial markets. The technology companies have market 

capitalizations equivalent to the size of many sovereign economies and have areas of influence 

that go far beyond the traditional industry boundaries (Mueller et al., 2017). The emergence of 

platform business models and ecosystem dependencies, coupled with the network effects, has 

overlaid webs of interdependence that inherently interrogate conventional thinking in relation 

to sector specificity risk and market segmentation. The existing business models that competed 

in an unchanged competitive landscape have been disrupted on the one hand, along with 

frameworks redefined through digital transformation, platform economics, and technological 

innovation, resulting in the creation of new channels of volatility transmission  (Sjödin et al., 

2023; Xing et al., 2019). The technological interdependencies work through various channels 

of supply chain relations, platform ecosystem dependencies, regulatory exposures, and 

innovation cycles, thus providing systematic transmission channels and may be prone to 

magnifying volatility than a traditional financial theory would have expected. 

 

While an extensive empirical body has examined volatility transmission across financial 

markets and economic sectors, research on technology-sector-specific spillovers remains 

disjointed and theoretically underdeveloped (Bas et al., 2024; Umar et al., 2024). Existing 

literature has the tendency to treat technology companies as homogeneous entities within 

broader sectoral studies, thus ignoring the distinct roles these companies fulfil in closely 

connected technological ecosystems. Despite the growing importance of major technology 

companies in global markets, as leading technology firms assume roles as market-infrastructure 

providers rather than conventional technology enterprises, a crucial gap has opened in our grasp 

of how these organizations engage within intricate ecosystem networks and to what extent such 

ties shape systemic risk. This gap carries heightened significance, for the leading technology 

firms collectively command more than $10 trillion in market capitalization (Tirole, 2023) and 

furnish critical infrastructure to a broad spectrum of other enterprises via their platform 

services, cloud-computing platforms, and orchestration of networked ecosystems. 

 

Technology companies’ business models, characterized by network effects, platform 

dependencies, and innovation cycles, create unique market dynamics that distinguish them 

from traditional sectors. Unlike conventional industries where firms compete primarily through 

product differentiation and operational efficiency, technology companies engage in ecosystem 

competition where success depends on network effects, platform adoption, and technological 

standard-setting (Gawer & Cusumano, 2014). This fundamental difference in competitive 

dynamics creates distinct volatility transmission mechanisms that traditional financial models 

may inadequately capture. The sector’s unique characteristics—including high intangible asset 

valuations, winner-take-all market dynamics, and regulatory uncertainty—create information 

processing challenges that may lead to correlated reactions and systematic mispricing during 

periods of uncertainty (Intara & Suwansin, 2024). As technology companies continue to grow 

in market influence and systemic importance, understanding these transmission mechanisms is 

crucial for investors, regulators, and market participants. The potential for technology sector 

volatility to cascade through broader financial markets has become a critical concern for 

financial stability, particularly as passive investment strategies and sector-based funds have 

increased correlation among technology stocks beyond what fundamental relationships would 

suggest. 
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This paper investigates volatility spillovers among nine major US technology companies, 

selected based on their systemic importance and representative ecosystem roles. Our analysis 

employs an ecosystem-based framework that recognizes these firms as distinct participants in 

an interconnected technological ecosystem, where each firm occupies specific functional 

roles—from platform infrastructure providers to consumer interface controllers to hardware 

foundation suppliers. The study captures the interdependence and levels of influence of stock 

return volatilities among these firms, providing insights into the influential roles of significant 

technology companies in the modern market landscape. By applying time-varying 

connectedness analysis to this ecosystem-representative sample, we reveal the dynamic 

evolution of volatility transmission networks and the emergence of hub-and-spoke patterns that 

reflect underlying technological dependencies. Our approach addresses a critical limitation in 

existing research: the failure to account for heterogeneous roles that different technology 

companies play within the broader technological ecosystem and how these roles influence their 

positions in volatility transmission networks. 

 

The contributions of this study are threefold. First, we develop an ecosystem-based theoretical 

framework that explains why certain technology companies consistently emerge as volatility 

transmitters while others function as receivers, providing theoretical grounding that existing 

spillover studies have largely ignored. Second, by employing the Connectedness Approach 

framework, we conduct a comprehensive analysis of volatility spillovers encompassing total 

connectedness, directional connectedness, and pairwise transmission across our ecosystem-

representative sample. Third, our analysis demonstrates that traditional market capitalisation-

based explanations for volatility leadership are insufficient; instead, ecosystem positioning and 

platform control emerge as primary determinants of transmission hierarchy, offering new 

insights for both academic research and practical risk management. 

 

Our findings have direct implications for multiple stakeholders. For academic research, we 

contribute to the intersection of technology economics and financial market dynamics by 

demonstrating how technological ecosystem theory can inform volatility transmission analysis. 

For market participants, our identification of specific firms that function as volatility 

transmission hubs provides actionable intelligence for portfolio managers seeking to optimize 

hedging strategies and risk management practices. For regulators and policymakers, our results 

suggest that regulatory frameworks may need to evolve beyond traditional financial institution 

oversight to encompass technology platform providers whose ecosystem influence creates new 

forms of systemic risk. By revealing the systematic nature of technology sector 

interdependencies, this research contributes to understanding financial market stability in an 

era where technology companies serve as critical market infrastructure. 

 

2. Literature Review 

2.1 Technology Sector Characteristics and Market Dynamics 

In the global financial markets, the technology industry has already formed a dominant force 

characterized by rapid innovation cycles, strong network effects, and significant market 

concentration among the dominant players. Such a transformation represents a fundamental 

shift in economic organization: technology firms have assumed the role of critical 

infrastructure providers and ecosystem orchestrators, with value creation processes radically 

different from those of industrial firms (Jacobides et al., 2018). Technology companies exhibit 

unique characteristics that distinguish them from the traditional industries: high growth 

volatility, substantial investments in research and development, platform-based business 

models, and strong ecosystem-dependency (Abed Alghani et al., 2024). These firms often 
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experience amplified market reactions to innovation announcements, regulatory changes, and 

competitive developments, thus creating volatility patterns that warrant specialized analysis 

and challenge conventional financial theories by introducing non-linear feedback effects and 

threshold dynamics that are absent in more traditional industries. 

Platform economics makes for an additional hallmark, distinguishing and transformative 

dimension of contemporary technology enterprises, creating unique interdependence 

configurations that evade the traditional industrial organizational framework. Many leading 

technology firms operate multi-sided platforms that create value by facilitating interactions 

between different user groups (Abed Alghani et al., 2024). This kind of platform-based model 

creates strong network externalities where the value of the platform grows with the number of 

participants and thus provides substantial competitive advantages, and at the same time creates 

a complex web of interdependencies whose propagation dynamics are unlike those in standard 

supply-demand relationships. Platform leaders, such as Microsoft (enterprise software), 

Google (advertising and cloud), and Amazon (e-commerce and cloud) serve as critical 

infrastructure on which numerous other businesses rely, with that interdependence escalating 

their impact on volatility trends in a given sector and systematically eroding established 

conceptions of industry boundaries, thus creating systematic dependencies that cross-cut 

conventional definitions of the sector (van der Vlist et al., 2024). 

Market concentration within the technology sector has reached unprecedented levels, with a 

small number of companies having such significant amounts of market capitalization and 

control that they create systemically important financial institutions outside the traditional 

banking sector. Apple, Microsoft, Amazon, Google, and several other similar businesses 

collectively share a significant proportion of both dominant indices and total market 

capitalization (Gawer, 2024). This occurrence raises important questions about market 

efficiency and competitive organization, and, at the same time, creates potential single points 

of failure in the wider financial system. This concentration creates potential systemic risk, as 

negative happenings to these companies can create excessive imbalance across the market, 

suggesting that it may be crucial to expand the traditional approach to the role of too-big-to-

fail companies to incorporate technology businesses whose ecosystem impact is substantially 

larger than their real market presence (Tirole, 2023). 

2.2 Theoretical Foundations of Volatility Spillovers 

Information-transmission theory provides the foundational framework for understanding 

volatility spillovers across financial markets through three main channels: fundamental 

linkages based on economic ties, behavioural linkages driven by herding and investor 

sentiment, and pure contagion effects spreading through markets without fundamental 

connections (Forbes & Rigobon, 2002). In technology companies, these channels are amplified 

by industry-specific dynamics that create complex interdependencies and informational 

asymmetries. Technology sector fundamental linkages operate through direct channels, 

including supply chain relationships, strategic partnerships, and competitive dynamics, 

alongside indirect channels through shared regulatory, technological, and macroeconomic risk 

exposures. Semiconductor companies like Intel and NVIDIA exemplify direct linkages by 

supplying critical components across the value chain, creating operational shock transmission 

pathways. Behavioural linkages gain prominence due to technology’s high visibility in investor 

portfolios and unique investment characteristics, triggering distinct cognitive biases. The 

representativeness heuristic leads to style investing, where funds allocate based on sector 

classifications rather than fundamental characteristics (Barberis & Shleifer, 2003), amplifying 

spillover effects through correlated trading strategies and momentum effects. 
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Network externality theory explains technology sector’s unique volatility patterns, where 

product utility increases with user adoption (Katz & Shapiro, 1985). This creates strategic 

complementarities within technology ecosystems, where success or failure cascades through 

networks via positive feedback loops and tipping point dynamics, particularly in platform-

based businesses. Information processing challenges arise from rapid technological change and 

high uncertainty regarding future cash flows, large R&D expenses, and network-dependent 

business models (Hall, 2002). These conditions create information asymmetries between 

stakeholders, leading to systematic mispricing and volatility amplification when investors 

struggle to distinguish idiosyncratic from systematic factors. 

Traditional asset pricing models like CAPM and multi-factor extensions may require 

adaptation for technology firms’ unique risk exposures, including interest rate sensitivity, 

innovation risk, and ecosystem-specific factors (Fama & French, 1993). Real options theory 

becomes particularly relevant as technology companies exhibit option-like payoff structures 

due to R&D investments and platform development opportunities (Schwartz & Moon, 2000), 

creating high sensitivity to volatility changes and systematic correlations across firms facing 

similar technological uncertainties. Technology markets experience contagion through 

mechanisms differing from traditional sectors: portfolio rebalancing treating technology stocks 

as a single asset class, margin calls during stress, and information cascades where price 

movements signal broader market conditions (Dornbusch et al., 2000). Ecosystem-specific 

channels, including platform disruption effects and competitive repositioning, amplify 

transmission, particularly during market stress periods. 

2.3 Empirical Evidence on Volatility Spillovers 

Early empirical studies established fundamental patterns of volatility spillovers using 

correlation and vector autoregression modelling. Hamao et al. (1990) documented substantial 

volatility spillovers across international stock markets, demonstrating that volatility in one 

market could predict volatility in another even when controlling for country-specific factors. 

This pioneering work established that volatility spillovers require specialized econometric 

models rather than conventional approaches, particularly relevant for technology sectors with 

high informational flows and complex interdependencies. 

Sectoral volatility spillover research reveals industry-specific transmission networks with 

unique characteristics. Marobhe and Kansheba (2022) examined asymmetrical volatility 

spillovers in the hospitality sector during COVID-19, documenting significant spillover effects 

that varied across sub-sectors and highlighting how crisis periods fundamentally alter spillover 

patterns as weak connections become strong transmission channels during stress. This research 

underscores the importance of time-varying methods in spillover analysis, as fixed models may 

fail to capture dynamic relationships across different market regimes. Structural break research 

provides insights into time-varying spillover patterns. Malik (2021) investigated volatility 

spillovers among sector equity returns, reporting strong effects of structural breaks on spillover 

patterns and showing that technology-sector volatility is particularly sensitive to regime shifts 

due to exposure to technological disruption and changing regulatory environments. The 

analysis demonstrated that ignoring structural breaks can lead to false conclusions regarding 

spillover strength and direction. 

Pro-cyclical sector studies document particularly strong volatility spillovers. Majumder and 

Nag (2017) examined shock and volatility spillovers across equity sectors in India’s National 

Stock Exchange, finding two-way volatility spillovers within pro-cyclical domains including 

Finance and Information Technology. Their IT sector analysis showed increased 
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interconnectedness, suggesting technology firms are more responsive to cross-firm volatility 

transmission than other sectors, with significant shares of volatility forecasting error variances 

attributable to spillovers from other technology firms. Cryptocurrency research provides 

insights into technology-adjacent markets. Vardar and Aydogan (2019) explored the return-

volatility nexus between Bitcoin and various asset classes in Turkey, finding notable spillovers 

from energy and technology stocks to Bitcoin. This reveals complex interconnectedness in 

technology-related markets and highlights how traditional technology companies drive 

volatility in emerging digital asset markets. 

Cross-country studies reveal the international nature of technology sector spillovers. Balli et 

al. (2015) found volatility spillovers across Australian industries triggered by global and 

industrial shocks, demonstrating that technology industries are highly sensitive to international 

events due to globalization and multinational technology firm operations. Technology sector 

spillovers often cross national borders, reflecting the global organization of technology markets 

and multinational operations of dominant firms. The COVID-19 pandemic provided unique 

insights into spillover effects under extreme market disruption. Vo (2023) noted that 

intersectoral interconnections were enhanced during this period, facilitating external shock 

propagation and volatility escalation. Technology companies functioned as both transmitters 

and receivers of shocks, with varying effects based on business model differences and market 

segment exposure. Crisis-specific research documents regime-dependent transmission 

patterns. Guru and Das (2021) measured volatility spillover triggers in Indian stock markets 

during COVID-19, observing that crises rewired spillover networks with technology 

companies playing central roles in transmission processes. Technology company spillover 

behaviour during crises differs substantially from normal times, showing increased 

bidirectional spillovers and network effects. 

The literature demonstrates clear empirical regularities relevant to technology sector analysis. 

Spillover effects are significantly stronger within sectors than across sectors, highlighting 

industry-specific determinants. Spillover patterns exhibit considerable time variability, with 

crisis periods altering intensity and transmission direction. Technology-related sectors 

consistently demonstrate strong spillover effects as both transmitters and receivers. Regime 

shifts and structural breaks can fundamentally alter spillover relationships, emphasizing the 

need for flexible econometric methods that accommodate parameter instability and capture the 

fundamental uncertainty characteristic of rapidly evolving technology markets. 

3. Methodology 

3.1 Data and Sampling 

This study examines daily natural log returns for nine major US technology companies selected 

based on systematic criteria to ensure comprehensive representation of the technology sector’s 

leading firms while addressing the theoretical frameworks established in our literature review 

regarding ecosystem interdependencies and platform economics. Our sample represents four 

distinct technology ecosystem layers based on value chain positioning and interdependency 

structures (Jacobides et al., 2018): (1) Platform Infrastructure (Microsoft, Google, Amazon) - 

core infrastructure providers whose services enable ecosystem participants, creating systematic 

dependencies consistent with platform economics theory and network externality effects; (2) 

Consumer Interface (Apple, Meta) - firms controlling user access points and data flows 

representing the behavioral linkage mechanisms discussed in our theoretical framework; (3) 

Hardware Foundation (Intel, Nvidia) - semiconductor providers creating supply-side 

dependencies that operationalize the fundamental linkages described in information 

transmission theory; and (4) Convergence Sectors (Tesla, IBM) - representatives of 
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technology’s expansion into traditional industries and enterprise transformation capturing the 

structural evolution regarding technology sector characteristics. This framework addresses 

technology market convergence where traditional sector classifications fail to capture actual 

interdependencies while providing empirical operationalization of the ecosystem theory and 

network externality concepts established in our theoretical foundation. The companies are 

Apple (AAPL), Amazon (AMZN), Google/Alphabet (GOOG), IBM (IBM), Intel (INTC), 

Meta (META), Microsoft (MSFT), Nvidia (NVDA), and Tesla (TSLA). This ecosystem 

representation enables analysis of cross-layer volatility transmission patterns that sector-

specific studies cannot capture, with each firm maintaining top-50 US market capitalization, 

ensuring sufficient systemic importance for meaningful spillover analysis while addressing the 

market concentration concerns and providing empirical grounding for the systemic risk 

implications discussed in our literature review. 

 

Our sampling approach directly addresses key limitations identified in existing volatility 

spillover literature by moving beyond traditional sector-based classifications to ecosystem-

functional groupings that better capture the interdependency structures theorized in platform 

economics and network externality literature. Data for these companies were collected from 

April 1, 2014, to May 31, 2024, sourced from Investing.com, covering critical periods of 

technology sector evolution, including the platform economy maturation, AI development 

cycles, and major regulatory developments that characterize the modern technology landscape 

described in Section 2.1. The natural logarithm of the ratio of consecutive daily closing prices 

was computed for daily log returns. This transformation normalizes data and stabilizes variance 

while addressing the unique volatility characteristics of technology firms identified in our 

theoretical review, particularly their sensitivity to innovation cycles and information 

asymmetries. As such, this series is now suitable for econometric analysis that accounts for the 

high-frequency information processing dynamics characteristic of technology markets. 

Descriptive statistics were computed to describe the distributional properties of log returns with 

particular attention to the kurtosis and skewness patterns that may reflect the option-like 

characteristics and network effect dynamics identified in our theoretical framework. To check 

for stationarity of the log return series, the ADF test was conducted with three specifications: 

with constant, with constant and trend, and without constant and trend ensuring that our 

subsequent spillover analysis captures genuine transmission effects rather than spurious 

correlations arising from non-stationary data. 

 

3.2 Volatility Spillover Analysis 

This study is based on the Connectedness Approach, which was developed by Diebold and 

Yilmaz (2012) and represents the optimal methodological framework for capturing the 

complex transmission mechanisms identified in our theoretical review, particularly the time-

varying nature of technology sector interdependencies. This framework is a follow-up to the 

seminal work by Diebold and Yilmaz (2009) in measuring volatility spillovers in financial 

markets using forecast error variance decompositions from VARs. The authors went on to 

propose measures of directional volatility spillovers in addition to total spillovers, which help 

identify the sources and recipients of the volatility transmission, thereby providing empirical 

operationalization of the fundamental, behavioural, and contagion linkages discussed in our 

information transmission theory framework. The Connectedness Approach contains several 

main steps that systematically capture the theoretical transmission mechanisms. The first step 

estimates a time-varying parameter VAR(p) with a rolling window approach, which is 

particularly suitable for technology markets given their susceptibility to structural breaks and 

regime changes. Second, H-step-ahead forecast error variance decompositions are calculated 

from the VAR model to measure the contributions of shocks to the variables in the system. 
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This step quantifies how much of the future forecast error variance of each variable can be 

explained by shocks to each variable, including itself, thereby operationalizing the information 

processing theory and capturing how technology firms’ information asymmetries manifest in 

volatility transmission patterns. The third is the computation of the total connectedness index 

(TCI) that captures the overall volatility transmission among the firms. The TCI aggregates the 

forecast error variance contributions and measures the spillover effect within the system, 

providing an empirical measurement of the ecosystem-level interdependencies theorized in our 

platform economics and network externality framework. 

 

Fourth, the total directional connectedness measures—total directional connectedness from 

others and total directional connectedness to others indicate the primary transmitters and 

receivers of shocks to volatility, respectively, thereby empirically identifying the hub-and-

spoke patterns predicted by platform economics theory and the hierarchical structures implied 

by ecosystem positioning. Fifth, the net total directional connectedness (NET) is calculated. 

This measure represents the difference between TO and FROM values, indicating whether a 

company is a net transmitter or net receiver of volatility. A positive NET value means the firm 

is a net transmitter, and the converse means it is a net receiver providing direct empirical tests 

of our theoretical predictions regarding platform leaders’ roles as volatility transmitters and 

ecosystem-dependent firms’ roles as receivers. The methodology also calculates Net pairwise 

directional connectedness (NPDC) to measure the directional volatility spillovers for each pair 

of companies. This allows one to identify the exact relationships and interactions within the 

network, thereby highlighting the bilateral transmissions of volatilities at the individual level 

enabling detailed examination of the specific ecosystem relationships and competitive 

dynamics discussed in our theoretical framework. The Connectedness Approach framework 

provides a complete study of volatility spillovers concerning overall connectedness, direction 

of spillovers, and specific pairwise relationships between companies while systematically 

addressing the theoretical mechanisms identified in Sections 2.1-2.3. This methodology is 

particularly suitable for technology sector analysis as it captures the time-varying nature of 

relationships in rapidly evolving markets and accommodates potential feedback loops within 

the system directly addressing the dynamic characteristics of technology markets identified in 

our literature review, including innovation cycles, regulatory changes, and platform evolution. 

 

Importantly, our methodological approach addresses key limitations in existing volatility 

spillover literature by incorporating ecosystem-based theoretical grounding rather than treating 

technology firms as homogeneous entities. While our directional connectedness measures 

indicate the direction and magnitude of information flow between firms, they represent 

statistical associations in variance decompositions rather than causal relationships. The TO and 

FROM indicators capture how much of one firm’s forecast error variance can be explained by 

shocks to other firms, but this does not establish that one firm’s actions directly cause changes 

in another firm’s volatility. Our analysis identifies patterns of information transmission and 

statistical interdependence, which may reflect underlying economic relationships but should 

not be interpreted as definitive evidence of causation (Diebold & Yılmaz, 2014) while 

recognizing that these statistical associations may reflect the theoretical transmission 

mechanisms identified in our literature review, including platform dependencies, ecosystem 

complementarities, and network effects. 

 

For our TVP-VAR model implementation, we selected an optimal lag length of 2 based on the 

Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC), balancing 

information retention with model parsimony while ensuring adequate capture of the 

information processing dynamics characteristic of technology markets discussed in Section 2.2. 
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The TVP-VAR approach was preferred over alternatives such as DCC-GARCH models due to 

its superior ability to capture time-varying relationships in financial markets characterized by 

structural changes (Antonakakis et al., 2020) particularly relevant for technology markets given 

their exposure to innovation cycles, regulatory changes, and platform evolution documented in 

our literature review. Furthermore, the TVP-VAR framework better accommodates non-linear 

dynamics (Maghyereh et al., 2024) that are prevalent in technology markets, particularly during 

periods of market turbulence such as the COVID-19 pandemic (Dsouza et al., 2024) addressing 

the regime-dependent behavior and crisis amplification effects identified in Section 2.3 of our 

empirical literature review. This methodological choice directly addresses the theoretical 

prediction that technology sector spillovers may exhibit threshold effects, regime-switching 

behavior, and non-linear feedback loops due to network externalities and platform competition 

dynamics discussed in our theoretical framework. 

 

To ensure the reliability of our findings, we conducted several robustness checks that address 

potential concerns regarding the stability of spillover patterns in rapidly evolving technology 

markets. First, we tested alternative lag specifications (p = 1 and p = 3) and found that our main 

results remained qualitatively unchanged confirming that our ecosystem-based transmission 

patterns are not artifacts of specific model parameterization. Second, we employed different 

rolling window sizes (150 and 250 days) to verify that our findings were not sensitive to the 

specific window length chosen for analysis ensuring that our results capture genuine ecosystem 

relationships rather than temporary market conditions. These sensitivity analyses confirmed 

the stability of our main findings, indicating that the identified volatility spillover patterns are 

robust to various model specifications and consistent with the theoretical prediction that 

ecosystem-based interdependencies should exhibit persistence over different time horizons and 

model specifications. Our robustness testing framework specifically addresses the concern 

raised in Section 2.3 regarding the importance of accounting for structural instability and 

parameter variation in technology sector analysis, while ensuring that our ecosystem-based 

theoretical predictions are empirically validated across different methodological specifications. 

All empirical analyses were conducted using R statistical software (version 4.2.1). The TVP-

VAR estimation and connectedness measures were implemented using the 

‘ConnectednessApproach’ package providing replicable and transparent implementation of our 

theoretical framework through established econometric procedures. 

 

 

4. Findings and Discussion 

4.1 Descriptive Analysis 

The time-series analysis in the daily natural log returns of the top nine major US technology 

companies illustrates unique volatility patterns, experiencing different market dynamics and 

being influenced from the outside. As shown in Figure 1, Tesla exhibits the highest level of 

fluctuation, which is confirmed by its standard deviation of 0.035 (see Table 1). This high 

volatility is indicative of Tesla’s aggressive market movements and investor speculation during 

rapid growth phases, particularly from 2018 to 2021. Also, Nvidia has very high volatility with 

a standard deviation of 0.030, which is related to the firm focusing on AI and gaming; it is 

clearly seen in rising spikes of returns. IBM has the lowest volatility, with a standard deviation 

of 0.015, and this would indicate more or less acceptable stability due to its strong market 

position and conservative investments, in line with the relatively minor spread in Figure 1. 

Compare this with Meta, which has large deviations, as evidenced by the very high kurtosis of 

24.485, indicative of plenty of high deviations, corresponding with the irregularly high spikes 

on its log return graph in various parts, particularly around significant market events such as 

the COVID-19 pandemic. 
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Figure 1: Trend Analysis 

 

For Nvidia, skewness is notably positive at 0.660, meaning the distribution has an extended 

right tail, indicating a higher likelihood of extreme positive returns compared to a normal 

distribution. This aligns with sporadic high positive spikes visible in Figure 1. On the other 

hand, IBM shows a skewness of -0.420, indicating a longer left tail with a higher propensity 

for extreme negative returns relative to positive ones, suggesting heightened downside risk 

compared to other companies in the sample. Google has a skewness of 0.280, suggesting 

moderate asymmetry toward positive returns. Tesla and Nvidia exhibit the highest volatility, 

as evidenced by their standard deviations of 0.035 and 0.030, respectively. This heightened 

volatility reflects larger daily price swings and is characteristic of high-growth technology 

firms with significant AI investments, consistent with findings from Gharbi et al. (2014), who 

documented similar patterns in innovative technology stocks. These observations are essential 

in the context of understanding volatility spillovers in the AI-driven technology market. The 

mean and median returns for most companies are close to zero, indicating marginal average 

daily returns over the period, while Nvidia (0.003) and Tesla (0.002) show marginally higher 

mean returns, demonstrating relatively better performance on average. Furthermore, Meta 

exhibits the most extreme price movements with the highest maximum return of 0.233 and the 

most negative minimum return of -0.264, indicating very significant fluctuations. These 

extreme values are supported by Meta’s exceptionally high kurtosis of 24.485, indicating a 

leptokurtic distribution with heavy tails that makes extreme returns more probable than in a 

normal distribution. 

 

4.2 Unit Root Analysis 

As Table 2, in all three different specifications of the ADF test, daily log returns for all nine 

major US technology companies are found to be stationary. This lends robustness to the whole 

exercise as evidence against a unit root in the log return series. So, these series are stationary, 

implying that necessary statistical properties like mean and variance remain unchanged in the 

long run, thus making them suitable for furthering econometrical modeling and analysis. 
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Table 1: Unit Root Test Results Table (ADF -At Level) 

    AAPL AMZN GOOG IBM INTC META MSFT NVDA TSLA 

With 

Constant 

t-Statistic -16.046 -51.217 -17.805 -15.904 -11.940 -17.632 -17.669 -18.025 -50.711 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

With 

Constant & 

Trend  

t-Statistic -16.043 -51.219 -17.807 -15.937 -14.305 -17.629 -17.665 -18.051 -50.703 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Without 

Constant & 

Trend  

t-Statistic -15.762 -51.075 -17.527 -15.906 -11.919 -9.875 -17.175 -15.958 -27.857 

Prob. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

4.3 Total Connectedness Analysis 

Figure 2 depicts the Total Connectedness Index (TCI) showing substantial fluctuations that 

reflect varying degrees of interconnectivity among nine major US technology firms, providing 

empirical validation of the time-varying nature of technology sector interdependencies 

predicted by our theoretical framework, particularly the regime-dependent behavior. At the 

start of the observed period (2016), the TCI shows high interconnectedness, potentially 

reflecting earlier platform ecosystem maturation theorized in literature. Notable peaks occur in 

2016, 2018, 2020, and 2022, with 2020 representing the most prominent spike corresponding 

to the COVID-19 pandemic onset. The 2016 peak coincides with Brexit referendum uncertainty 

and US presidential election volatility affecting global technology markets, while the 2018 

spike corresponds to US-China trade war escalation and technology sector tariff concerns, 

demonstrating how geopolitical events amplify technological interdependencies theorized in 

our framework. The 2020 peak emphasizes increased interconnectivity during the pandemic as 

stock return shocks across companies had considerably significant effects on each other, 

indicating heightened systemic risk and market uncertainty, thereby providing empirical 

validation of contagion theory predictions, where crisis periods amplify fundamental 

interdependencies through behavioral and liquidity channels. Post-2020, interconnectedness 

decreases as the TCI drops, revealing market stabilization. The 2022 peak corresponds to 

Federal Reserve interest rate increases and technology sector earnings disappointments, 

reflecting the sector’s sensitivity to macroeconomic conditions theorized in our asset pricing 

framework. Post-2022 volatility indicates fluctuating interconnectivity, potentially driven by 

technological developments, market events, or external shocks to the technology sector, 

confirming the dynamic nature of ecosystem interdependencies and validating our theoretical 

prediction that technology sector spillovers exhibit time-varying intensity corresponding to 

innovation cycles and external shocks. 
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4.4 Directional Connectedness Analysis 

Figure 3 shows the total directional connectedness TO others (TOi) for nine major US 

technology companies, measuring each firm’s influence on all other series and demonstrating 

individual company impact within this network, thereby providing direct empirical tests of our 

theoretical predictions regarding ecosystem hierarchy and platform leadership roles. The figure 

reveals varying degrees of influence among companies over time, consistent with our 

ecosystem-based theoretical framework predicting systematic differences in transmission roles 

across functional layers. Apple (AAPL), Amazon (AMZN), Google (GOOG), Microsoft 

(MSFT), and Nvidia (NVDA) exhibit the highest total directional connectedness TO others, 

indicating the most influence on other firms, consistent with theoretical expectations that 

platform infrastructure and consumer interface firms would emerge as dominant transmitters 

due to their central positions in the technology ecosystem. These companies show elevated TOi 

values during critical market events and increased volatility periods, such as the COVID-19 

pandemic around 2020, suggesting patterns consistent with crisis amplification effects 

predicted by contagion theory and behavioral finance frameworks. Microsoft (MSFT) exhibits 

persistently high TOi values relative to peers, reflecting a stable transmission role in the 

technology market and aligning with platform economics theory that infrastructure providers 

with extensive ecosystem dependencies would consistently emerge as volatility transmitters. 

Similarly, Google (GOOG) and Apple (AAPL) demonstrate substantial influence, with their 

TOi values peaking during market turbulence periods, consistent with theoretical predictions 

about platform leaders’ roles in information transmission and ecosystem coordination. Nvidia’s 

(NVDA) post-2020 TOi surge reflects its growing AI ecosystem dominance, while Amazon’s 

(AMZN) consistent high influence confirms multi-platform operators as systemic transmission 

nodes, validating our ecosystem framework’s prediction that hardware foundation and multi-

platform operators would exhibit significant transmission capacity due to their critical positions 

in technology value chains. IBM (IBM) and Intel (INTC) show the most limited TOi scores, 

indicating least influence on other companies, empirically consistent with our theoretical 

prediction that convergence sector and cyclical hardware firms would exhibit limited 

transmission capacity due to their dependent positions within the broader technology 

Figure 2:  Total Connectedness Index (TCI) 
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ecosystem. Meta (META) demonstrates intermediate influence with notable increases during 

specific market stress periods, reflecting the consumer interface layer’s intermediate position 

and exposure to regulatory and competitive pressures theorized in our framework. 

 
Figure 3: Total directional connectedness-TO 

 

Figure 4 shows the total directional connectedness FROM others (FROMi) measuring how 

much shock in each company’s stock comes from others, providing empirical validation of 

theoretical predictions regarding ecosystem vulnerability patterns. IBM and Intel exhibit 

consistently higher FROMi values, indicating greater vulnerability to external market 

movements with peaks during crises such as the 2020 pandemic. This pattern aligns with 

resource dependence theory (Pfeffer & Salancik, 1978), where firms in mature or cyclical 

technology segments become more susceptible to ecosystem-wide developments, with IBM’s 

vulnerability reflecting dependence on enterprise technology adoption cycles and Intel’s 

sensitivity stemming from exposure to demand fluctuations across multiple semiconductor-

driving technology segments. In contrast, Apple, Google, and Microsoft exhibit the lowest 

FROMi values, demonstrating relative insulation from external shocks. This validates platform 

economics theory (Parker et al., 2017), where ecosystem orchestrators with control over critical 

infrastructure and user networks possess structural advantages that buffer external volatility 

while maintaining influence over dependent firms. Nvidia maintains moderate FROMi despite 

its AI infrastructure role, reflecting specialized semiconductor applications that partially 

insulate it from broader technology cycles while maintaining supply chain dependencies, 

providing nuanced evidence of hardware foundation firms’ complex positioning that 

challenges simple theoretical predictions. Tesla shows higher vulnerability reflecting electric-

vehicle supply-chain dependencies. Amazon and Meta exhibit high sensitivity with significant 

increases during market disruptions. Their higher-than-expected sensitivity challenges 

platform economics predictions, with Amazon’s exposure to multiple business cycles 

simultaneously (retail, cloud, logistics) and Meta’s dependence on advertising markets and 

regulatory environments creating vulnerabilities despite network advantages, demonstrating 

that business model complexity and regulatory exposure can override platform characteristics 

in determining transmission patterns and highlighting the need for theoretical frameworks 

accounting for multi-dimensional risk exposures. 
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Figure 4: Total Directional Connectedness- FROM 

 

Figure 5 shows the net total directional connectedness (NETi) measuring whether firms are net 

transmitters (NETi > 0) or receivers (NETi < 0) of shocks, providing comprehensive empirical 

validation of our ecosystem-based theoretical framework’s transmission hierarchy predictions. 

Microsoft (MSFT), Google (GOOG), and Apple (AAPL) exhibit consistently positive NETi 

values, confirming their roles as net transmitters and ecosystem orchestrators with significant 

network impact. Microsoft shows particularly strong positive NETi, highlighting its role as a 

major market influencer and empirically validating platform economics theory predictions 

regarding platform leaders’ systemic volatility transmission capabilities. IBM and Intel (INTC) 

are characterized by negative NETi values as net receivers, responding to market shocks rather 

than causing them, providing empirical validation of resource dependence theory predictions 

regarding convergence and cyclical hardware firms’ vulnerable positions within technology 

ecosystems. Amazon (AMZN), Meta (META), Nvidia (NVDA), and Tesla (TSLA) display 

oscillating NETi values, transitioning between net transmitter and receiver roles. This 

variability reflects regime-dependent transmission characteristics, with AMZN/META’s 

business model complexity (e-commerce/advertising exposure combined with platform 

elements) and NVDA/TSLA’s innovation cycle dependencies (AI leadership and supply-chain 

exposures respectively) creating time-varying transmission capacities. These patterns 

empirically demonstrate the dynamic nature of ecosystem relationships and confirm our 

theoretical prediction that firms’ positions within transmission networks exhibit time-varying 

characteristics corresponding to market conditions and ecosystem evolution, thereby validating 

the value of ecosystem-based approaches to understanding technology sector 

interdependencies and providing empirical foundation for theoretical frameworks established 

in our literature review. 



International Journal of Accounting & Business Finance   

Vol.11, No.1, June 2025 Issue. pp: 221-241 

International Journal of Accounting & Business Finance is accessible at http://www.maco.jfn.ac.lk/ijabf  

235 

 

 
Figure 5: Net Total Directional Connectedness (NETi) 

4.5 Network Structure Analysis 

The spillover dynamics revealed from Table 3 and Figure 6’s network plot provide 

comprehensive empirical validation of our theoretical framework’s ecosystem-based 

interdependency predictions. MSFT and GOOG emerge as dominant transmitters with TO 

values of 86.47 and 78.67 respectively, confirming platform economics theory where 

ecosystem dependencies amplify volatility transmission through Azure/Office infrastructure 

(MSFT) and search/advertising/cloud foundational positions (GOOG), thereby providing 

direct empirical validation of theoretical mechanisms regarding platform economics and 

network externalities as transmission amplifiers. Figure 6’s network visualization reveals a 

core-periphery structure where node size represents market influence and edge thickness 

indicates transmission strength, with leading tech giants forming central hubs with thick 

outgoing edges, validating ecosystem theory predictions about hierarchical transmission 

channels where infrastructure providers occupy central positions due to their foundational 

market roles. This clustering pattern demonstrates volatility concentration around major 

technology platform providers rather than even distribution across the sector, indicating 

platform ecosystem leadership correlates with systemic importance and providing empirical 

evidence for systemic risk implications theorized in Section 2.1. Apple (AAPL) and Amazon 

(AMZN) serve as notable net transmitters with TO values of 67.77-68.59, confirming their 

roles as consumer interface controllers and multi-platform operators whose market decisions 

correlate with adoption patterns across multiple technology segments. Nvidia (NVDA) with 

TO value of 63.53 reflects its critical AI and gaming value chain position where semiconductor 

innovations correlate with performance expectations across dependent industries, validating 

theoretical predictions regarding hardware foundation firms’ transmission capacity through 

innovation spillovers. In contrast, IBM and Tesla are net receivers with high FROM values of 

44.52 and 49.34 respectively, with IBM’s status aligning with resource dependence theory 

where mature enterprise segments exhibit sensitivity to platform leaders’ shifts, while Tesla 

demonstrates convergence firms’ statistical associations with core technology infrastructure 

despite market prominence. Intel (INTC) and Meta (META) similarly function as net receivers 

with FROM values of 59.27 and 63.36, reflecting cyclical semiconductor associations with 

ecosystem demand patterns (Intel) and social media platforms’ sensitivity to broader 

technology infrastructure and regulatory developments (Meta), providing empirical evidence 



International Journal of Accounting & Business Finance   

Vol.11, No.1, June 2025 Issue. pp: 221-241 

International Journal of Accounting & Business Finance is accessible at http://www.maco.jfn.ac.lk/ijabf  

236 

 

for complex interdependencies while highlighting how consumer interface firms can exhibit 

receiver characteristics under specific market conditions. 

 
Figure 6: Network Plot of Net Pairwise Directional Connectedness (NPDC) 

 

The matrix reveals directional pairwise connectedness in the volatility network, representing 

statistical relationships rather than causal mechanisms. Figure 6’s visualization shows 

Microsoft (TO: 86.47, NET: +16.36) and Google (TO: 78.67, NET: +10.19) as dominant net 

transmitters (blue nodes), while Tesla (NET: -14.96) and IBM (NET: -12.09) emerge as 

primary net receivers (yellow nodes). The core-periphery structure demonstrates that platform 

infrastructure providers (MSFT/GOOG) occupy central positions with thick outgoing edges, 

while dependent firms (TSLA/IBM) remain peripheral. Notably, IBM transmits more volatility 

to Google (6.45) than Google transmits to IBM (4.12), illustrating complex directional 

relationships that challenge simple platform hierarchy assumptions. Microsoft’s cloud 

infrastructure and enterprise ecosystem dependencies, combined with Google’s foundational 

search/advertising/cloud positions, amplify their transmission capacity through platform-based 

business models. Tesla’s net receiver status despite substantial market capitalization 

demonstrates that ecosystem positioning and business model characteristics determine network 

roles rather than market size alone, validating our theoretical framework’s emphasis on 

functional roles over simple size metrics. The Total Connectedness Index of 60.81% indicates 

moderate system-wide connectedness, with significant risk management implications for net 

receivers who show greater vulnerability to externally-originated volatility shocks. 

 

The NETi measurements show Microsoft (+16.36) and Google (+10.19) as substantial net 

volatility exporters, with Tesla (-14.96) and IBM (-12.09) as significant net importers. These 

asymmetric patterns align with information processing theory (Grossman & Stiglitz, 1980), 

where platform leaders with superior information access influence price discovery for 

information-dependent firms, confirming that ecosystem positioning determines transmission 

hierarchy more than market size alone. External factors amplify these transmission patterns, as 

evidenced by increased interconnectedness during COVID-19, suggesting macroeconomic 

shocks intensify existing channels rather than altering network structure. This supports 

contagion theory (Forbes & Rigobon, 2002), where crises amplify fundamental 
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interdependencies while preserving underlying architecture. Geopolitical tensions correlate 

with differential volatility patterns, where supply-chain-dependent firms like Intel (NET: -4.79) 

show higher shock absorption reflecting embedded volatility from Asian semiconductor supply 

chains, contrasting with cloud-centric digital models, though unobserved confounders may 

contribute to these patterns. The dense interconnections validate ecosystem theory predictions 

(Moore, 2006) about technological interdependencies creating systematic transmission 

channels, with directional asymmetries like Microsoft→Tesla (7.30) versus Tesla→Microsoft 

(4.36) confirming resource dependence theory where firms controlling critical resources exert 

disproportionate influence over dependent firms. However, IBM’s notable spillover to Google 

(6.45) demonstrates that legacy firms can retain influence in specific relationships despite 

overall high receptiveness (FROM: 44.52), adding complexity to simple platform hierarchy 

assumptions. Apple’s moderate net transmitter role (+4.76) and high receptiveness (FROM: 

63.02) reflect its hybrid position as a platform leader with significant exposure to consumer 

demand shocks. These results establish Microsoft and Google as primary focal points for 

monitoring market volatility and systemic risk, though underlying causal mechanisms require 

investigation through alternative methodological approaches while providing empirical 

foundation consistent with theoretical frameworks established in our literature review. 

 
Table 2: Diebold and Yilmaz connectedness matrix 

  AAPL AMZN GOOG IBM INTC META MSFT NVDA TSLA FROM 

AAPL 36.98 8.12 9.11 3.83 6.41 7.54 11.03 12.05 4.93 63.02 

AMZN 8.38 33.92 13.24 3.08 5.28 10.8 12.38 7.64 5.28 66.08 

GOOG 8.58 12.2 31.52 4.12 6.31 11.16 14.36 7.65 4.1 68.48 

IBM 5.51 4.34 6.45 55.48 9.02 3.66 8.59 4.39 2.56 44.52 

INTC 7.7 6.18 7.88 7.31 40.73 5.67 11.95 8.68 3.9 59.27 

META 8.22 11.52 13.22 2.7 5.28 36.64 10.34 7.08 5.01 63.36 

MSFT 9.62 10.91 13.6 5.34 9.3 8.21 29.89 8.78 4.36 70.11 

NVDA 12.42 7.92 8.58 3.25 7.85 6.65 10.51 37.75 5.05 62.25 

TSLA 7.34 7.41 6.59 2.8 5.04 6.41 7.3 7.26 49.84 50.16 

TO 67.77 68.59 78.67 32.43 54.48 60.11 86.47 63.53 35.19 547.25 

Inc.Own 104.76 102.51 110.19 87.91 95.21 96.75 116.36 101.29 85.04 cTCI/TCI 

NET 4.76 2.51 10.19 -12.09 -4.79 -3.25 16.36 1.29 -14.96 68.41/60.81 

NPT 6 5 7 1 2 3 8 4 0   

 

 

5. Conclusion 

This paper extensively examines volatility spillover of nine of the most major United States 

technology corporations through the perspective of ecosystem-based framework and 

Connectedness Approach methodology. This analysis captures the trend of interdependence 

and the influence of volatilities of stock returns of these companies, and thus aids in enhancing 

the knowledge on the current trends of modern technology market dynamics. The empirical 

findings reveal that there are different volatility profiles reflecting the unique position of each 

of the companies in the technological ecosystem. Tesla and Nvidia record the highest levels of 

volatility due to the active movements in the market and high levels of investor speculations in 

the days of significant growth. Conversely, IBM has the least volatility, which means that its 

performance is more or less constant on account of its market presence. The substantial 

fluctuations in Meta, which is marked by high kurtosis, is associated with key market 
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occurrences, especially the COVID-19 pandemic, thus demonstrating the extent of external 

provocations highlighting the impact of external shocks.  

The Total Connectedness Index (TCI) has significant temporal variation, whereby its peaks 

reflect salient market events like the COVID-19 pandemic, the 2016 Brexit/election 

uncertainty, the 2018 trade war tensions, and the 2022 Federal Reserve policy shifts. These 

variations confirm the hypothesis that the volatility spillovers are increased during the periods 

of crisis due to the increased uncertainty of the investors, as well as to the increased likelihood 

of correlated trading. The directional connectedness analysis establishes that the volatility 

connection is significant at the technology sector level with a few companies, Microsoft, 

Google, Apple, Amazon, and Nvidia being the chief transmitters that influence other 

companies considerably. This transmission hierarchy aligns with platform economics theory, 

where infrastructure providers and ecosystem orchestrators naturally become volatility sources 

due to their central positions in value networks. Conversely, IBM and Intel emerge as net 

receivers, indicating greater susceptibility to external market movements consistent with their 

dependent positions within technology ecosystems. The net pairwise directional connectedness 

analysis confirms Microsoft and Google as dominant transmitters, while IBM and Tesla are 

primary receivers, demonstrating that ecosystem positioning rather than market capitalization 

determines transmission hierarchy. 

Understanding spill over patterns among the top technology firms provides key information to 

a wide range of stakeholders. For investors, implementing asymmetric hedging programs, 

which take into consideration the directional transfer of volatility, will provide a more effective 

protection to the portfolio. Portfolios exposed to receiver firms such as IBM and Intel can 

obtain superior protection by taking protective positions on transmitters Microsoft and Google, 

rather than hedging directly. Early warning systems based on the release of strategic 

announcements by key transmitters can inform investment and risk management decisions. For 

regulatory bodies, identifying systemically important firms enables targeted oversight 

frameworks. Stress testing should specifically simulate shocks originating at core transmission 

points, especially Microsoft and Google, and regulatory frameworks should explicitly 

recognize the systemic importance of technology platform providers to reduce the exposure to 

concentration risk effectively. For corporations, receiver firms ought to set up monitoring 

systems for strategic changes by key transmitters and deploy counter-cyclical measures to 

reduce vulnerability. Understanding the patterns of transmission enables the firms to calibrate 

strategic decisions to market conditions, by seeking growth when the inter connectedness is 

low and being cautious when it is high pursuing growth during low interconnectedness periods 

and exercising caution during heightened transmission phases. 

Our connectedness measures represent statistical associations rather than causal relationships, 

requiring future research using instrumental variables or structural models to establish 

definitive causality. Focusing on nine major firms may miss dynamics from smaller or 

emerging technology companies, potentially limiting understanding of broader market 

interdependencies. The US-centric analysis may not capture global interdependencies and 

international spillovers. Future research should expand the sample to include smaller 

technology firms and international markets for more comprehensive understanding. 

Incorporating sector-specific variables such as R&D intensity, platform ecosystem metrics, and 

regulatory environment indicators could better capture unique characteristics driving 

technology sector spillovers. These extensions would provide more robust insights for 

investors, policymakers, and industry stakeholders. 
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