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Abstract. Frequent flooding in Sri Lanka underscores the necessity of flood modelling as 

inundation extent and flood depth can easily be identified for implementing flood control 

measures. Accuracy of flood modelling is primarily influenced by topographic data sources and 

their resolution.  Due to the lack of Light Detection and Ranging (LiDAR) data source in most 

regions of Sri Lanka, alternative topographic data sources need to be assessed. This paper 

investigates the accuracy of 2D flood model results in terms of flood depth and inundation extent 

developed based on open source topographic data sources, namely Shuttle Radar Topography 

Mission (SRTM) and Advanced Spaceborne Thermal Emission (ASTER) with 30 and 90 m 

resolutions. This study was carried out at the downstream of Kelani river basin as it is prone to 

frequent flooding. The 1 m resolution LiDAR data were used as the reference data to assess the 

accuracy of aforesaid data sources, and were resampled to 30 and 90 m to investigate the effect 

of resolution with SRTM and ASTER data sources. The results show that reduction in the 

resolution of LiDAR data source does not significantly affect the model accuracy as even 90 m 

resolution LiDAR data source produced higher accurate results (flood depth, root mean square 

error of 0.95 m; inundation extent, F-statistic of 70.21%) than the 30 m resolution SRTM and 

ASTER data sources. 

1.  Introduction 

Floods are identified as one of the most common and destructive natural hazards in several parts of the 

world [1]. Floods cause several impacts on the society, namely economical losses, environmental and 

social problems and human casualties [2]. In Sri Lanka, floods occur due to extreme rainfall during the 

two monsoons, namely Northeast (November-February) and Southwest (May-September), which are 

caused by the development of extreme low pressure in the Bay of Bengal. The both monsoons are caused 

by differing temperature trends over the land and ocean. Among all the river basins, Kelani, Kalu, Gin, 

Nilwala and Mahaweli are susceptible to frequent flooding affecting an approximate area of 250 km2 

and involving more than one million people [3]. Much more attention needs to be given on flood impacts 

of Kelani river as part of the capital of Sri Lanka lie on the lower floodplain of the river and those areas 

are prone to flooding due to the overflow of Kelani river during Southwest monsoon. Flood impacts 

caused due to the overflow of Kelani river in the recent past have underscored the necessity of 

developing reliable flood models as it is the preferred approach to identify flood depth and inundation 

extent of the flood [4]. Thus, it is useful to make awareness amongst people who are living in the 

floodplain and to implement rescue and relief operations during the flooding [5] and avoid future 

constructions on the flood risk areas [6].   
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Reliability of flood model results depends on the accuracy of flood modelling [5] and topographic 

data sources and their resolution play an important role in determining the accuracy of flood modelling 

[5, 7]. Topography is represented in the form of a raster, which is commonly known as Digital Elevation 

Model (DEM). There are different methods available to develop DEMs, namely photogrammetric 

method, interferometry, Light Detection and Ranging (LiDAR) technology, aerial photography and 

topographic surveys [8, 9]. Among all these methods, LiDAR technology serves as an accurate 

technique to produce highly accurate topographic datasets [10-12]. However, many locations in Sri 

Lanka and around the world do not have LiDAR data due to the cost of data acquisition and time 

constraints [12, 13]. 

In Sri Lanka, LiDAR survey (1 m resolution) was carried out by Survey Department of Sri Lanka in 

collaboration with Japan International Cooperation Agency (JICA) in 2016, covering small regions of 

the country as depicted in Figure 1. The distinct zones A, B, C, and D marked on Figure 1 denote the 

frequent flood prone basins in Sri Lanka, namely Kelani, Kalu, Gin and Nilwala, respectively. It is 

clearly shown that some reaches of Kelani and Kalu basins are covered with LiDAR data whereas Gin 

and Nilwala river basins have not been covered at all.  

 

 

Figure 1. LiDAR data availability in Sri Lanka. 

 

Most of the past studies were extensively carried out using one-dimensional (1D) modelling due to 

the computation simplicity and shorter computational time even though it has many shortcomings, 

namely incapability to represent the whole topography of river channel and floodplains, incapability to 

model lateral flow and less detailed between modelled cross-sections [7, 14]. These shortcomings of 1D 

models can be overcome by applying two-dimensional (2D) modelling and they are capable of 

modelling lateral flow movement explicitly with the continuous representation of topography [7, 15]. 

However, the main drawback of 2D models when compared with the 1D model is the substantial 

computational time required for the simulation [6]. 

Therefore, the primary objective of this study is to assess the accuracy of freely available 

topographical data sources in Sri Lanka, namely Shuttle Radar Topography Mission (SRTM) and 

Advanced Spaceborne Thermal Emission (ASTER) with 30 and 90 m resolutions for 2D flood 

modelling. The 1 m resolution LiDAR dataset was used as a reference dataset to assess the accuracy of 

aforesaid datasets and was resampled to 30 and 90 m to investigate the effect of the resolution against 

SRTM and ASTER datasets. 
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2.  Materials and methods 

2.1.  Study area 

Kelani basin is located between 6.78°N to 7.08°N latitudes and between 79.87°E to 80.72°E longitudes 

with a basin area of 2230 km2. A downstream reach of about 25 km in length from Hanwella to Colombo 

covering an area of 250 km2 was selected for this study as depicted in Figure 2. Extents of floodplain 

from left bank and right bank of the Kelani river was demarcated based on the past observed flood 

inundation extents corresponding to the flood events occurred in 2017 and 2018 since those flood events 

were considered as baseline data in this study.  

 

 

Figure 2. Study area covering downstream of Kelani basin from Hanwella to Colombo. 

2.2.  Topographic data sources 

The 1 m high resolution LiDAR dataset which was produced by the Survey Department of Sri Lanka in 

collaboration with Japan International Cooperation Agency (JICA) in 2016 was used as reference dataset 

in the study. 

SRTM is one of freely available DEMs, which was completed in 2000, and provides the first high 

resolution DEM data of near global scale [16]. The SRTM data were released publicly in 2003, for many 

parts of the world with 90 m resolution and 30 m resolution covering only the region of the United States 

and its territories. After the year of 2015, 30 m resolution datasets were also publicly distributed by the 

United States Geological Survey (USGS) along with the 90 m data [9]. For this study, 30 m resolution 

dataset was downloaded from the USGS website whereas 90 m resolution dataset was downloaded from 

CGIAR-CSI website. 

The 1st version of the ASTER dataset, released in June 2009, was compiled from over 1.2 million 

scene-based DEMs covering land surface between 83o North and 83o South latitudes, involving 99% of 

Earth’s landmass [9, 17]. The 2nd version of the ASTER dataset was released by the METI of Japan and 

NASA of United States in October 2011. For this study, the 30 m resolution dataset was downloaded 

from the USGS website. 

The 1 m LiDAR dataset depicted in Figure 3 was used as reference dataset to assess the effect of 

different topographic data sources and their resolution on the accuracy of 2D flood modelling in terms 

of two model outputs, namely inundation extent and flood depth. In order to perform this task, six models 

were developed, i.e. two models with 30 m and 90 m resolutions from each dataset, namely LiDAR, 
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SRTM and ASTER as shown in Figure 4. The ArcGIS 10.3 (ESRI) was used to resample the  1 m 

resolution LiDAR dataset into 30 and 90 m resolution datasets, and 30 m resolution ASTER dataset into 

90 m dataset using the nearest neighbour resampling method [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.  Hydraulic  modelling 

2.3.1.  2D flood model. The Nays2D Flood solver developed by the International River Interface 

Cooperative (iRIC) (Hokkaido University, Japan) was used in this study. Nays2D Flood is an open-

source software that solves shallow water computations using the finite difference scheme [18]. The set 

of continuity and momentum equations of 2D unsteady flow in the Cartesian coordinate system are 

given in equations (1-3);   

Continuity equation: 
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 𝜕𝑡
+

𝜕(ℎ𝑢)

𝜕𝑥
+ 

𝜕(ℎ𝑣)

𝜕𝑦
= 0                                                                  (1) 

Momentum equations: 
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where h = water depth; u, v = depth-averaged velocity components; 𝜏𝑏𝑥  = riverbed shear stress in the x-

direction; 𝜏𝑏𝑦 = riverbed shear stress in the y direction; 𝜌 = the water density;  H = stage height (𝐻 =

ℎ + 𝑧𝑏); 𝑧𝑏= bed elevation; 𝑉 = eddy viscosity; t = time; and x, y = spatial coordinates in the Cartesian 

system. Bed shear stress components are given in equations (4-6); 

                                                      𝜏𝑏𝑥 = 𝜌Cfu√u2 + v2                                                                        (4) 

      

                                                      𝜏𝑏𝑦 = 𝜌Cfv√u2 + v2                                                                                 (5) 

 

                                                               v =
𝑘

6
uh                                                                                              (6)   

 

Figure 3. Reference data. 

 

 

Figure 4. Datasets used in the study: (a) LiDAR 30 m; (b) SRTM 

30 m; (c) ASTER 30 m; (d) LiDAR 90 m; (e) SRTM 90 m; f) 

ASTER 90 m. 
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where Cf = riverbed friction coefficient; k = Karman constant; and u = shear velocity.  

The above equations which are in the Cartesian coordinate system were transformed into the moving 

boundary-fitted coordinate system using the Jacobian chain rules. The high-order Godunov scheme 

known as Cubic Interpolation Psuedoparticle (CIP) method was used for application of the equations of 

water flow. This method interpolated physical values between grid points at the previous time step by 

using cubic equation under the assumption that spatial gradients of those physical values were also 

transported by similar convective equations. Information on a small number of adjacent cells is enough 

for this approach to compute precise profiles of convectional variables [19, 20].  

2.3.2.  Model configuration. The flow hydrograph (peak discharge 1449 m3 s-1) observed at Hanwella 

hydrometric station during the flood event occurred in 2017 was used as upstream boundary condition 

whereas tidal variation was used in the downstream boundary condition as river mouth is connected to 

the sea. The calculation time step was set for 0.2 sec for 1 m resolution, 0.8 sec for 30 m resolution and 

1.2 sec for 90 m resolution datasets which satisfied Courant-Friedrichs-Lewy (CFL) condition. Model 

results were exported to ArcGIS (ESRI) to develop inundation maps and carry out further analyses of 

model accuracy. 

As the laser and radar waves used in the development of LiDAR, SRTM and ASTER datasets are 

not capable of penetrating the water surface and capturing the elevation of river cross-sections, all DEMs 

used in the study were incorporated with surveyed river cross-section data, which were carried out by 

Sri Lanka Navy using bathymetry boat survey in 2017, at about the interval of 100 m between each 

cross-section. 

2.4.  Evaluation of model calibration and validation 

Water levels observed at an hourly time step in Ambatale peripheral hydrometric station in 2017 (23rd 

May to 28th May) and 2018 (19th May to 24th May) flood events were used for calibration and validation, 

respectively. Manning’s roughness coefficients of channel and floodplain [4, 7]  were used as model 

parameters to calibrate the model. The land cover map developed using ArcGIS (ESRI) software was 

used to assign the Manning’s roughness coefficinets for different land use types. The goodness of fit 

between simulated and observed water levels was numerically analysed using objective functions, 

namely Nash-Sutcliffe Efficiency (NSE) [21], Percentage Bias (PBIAS) [22] and Mean Relative 

Absolute Error (MRAE) [23], and those are given in equations (7-9); 

                                                  NSE= 1 −
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖− 𝑂̅)2𝑛
𝑖=1

                                                                         (7) 

 

                                                 PBIAS =
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1 ×100

∑ 𝑂𝑖
𝑛
𝑖=1

                                                                       (8) 

 

                                                 MRAE =  
1

𝑛
∑

|𝑆𝑖−𝑂𝑖|

𝑂𝑖

𝑛
𝑖=1                                                                          (9) 

where 𝑂𝑖 and  𝑆𝑖 are the observed and simulated water levels in 𝑖th hour; 𝑂̅ is the mean of observed water 

level;  𝑛 is the total number of hours. Higher rating of model performance is attained when value of NSE 

approaches to ‘one’ whereas values of PBIAS and MRAE approach to ‘zero’.  

2.5.  Evaluation of model accuracy  

Accuracy of model results developed by different topographic data sources and their resolutions was 

assessed in terms of two hydraulic contexts, namely flood depth and inundation extent. For flood depth 

analysis, flood depth corresponding to each node, developed by each model was assessed with respect 

to the reference model using Root Mean Square Error (RMSE) which is given in equation (10); 

                                 RMSE = [
1

𝑛
 ∑ (𝐷𝑖𝑅𝑒𝑓 − 𝐷𝑖𝐷𝐸𝑀)2𝑛

𝑖=1 ]
1

2                                                          (10) 
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where 𝐷𝑖𝑅𝑒𝑓 and 𝐷𝑖𝐷𝐸𝑀 are depth simulated by reference DEM and other DEMs in 𝑖th node; n is the total 

number of nodes analysed. The quantitative comparison of inundation extents developed by different 

models was assessed using F-statistic (measure of fit) (F), which is given in equation (11);  

                                       F (%) =
𝐴1∩ 𝐴2

𝐴1∪ 𝐴2
× 100                                                                               (11) 

where 𝐴1 and 𝐴2 are simulated and observed (i.e. simulated by the reference model) inundation areas; 

∩ and ∪ are the ‘Intersection’ and ‘Union’ operations performed in ArcGIS, respectively. The highest 

possible value of F is 100%, which is attained when the two inundation areas are completely overlapped. 

3.  Results and discussion 

3.1.  Summary of model calibration and validation 

Model performance was assessed at the calibration and validation in terms of objective functions and 

those values are tabulated in Table 1. The values of the objective function show good agreement between 

simulated and observed water levels as they are within the accepted ranges specified in the literature 

[24, 25]. Manning’s roughness coefficients for the different land use assigned during calibration and 

validation are presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.  Effect of topographic data sources and their resolution on model accuracy  

3.2.1.  Flood depth. The flood depth corresponding to each node, developed by each model was exported 

to ArcGIS and ‘Attribute and table operations’ were performed to evaluate the accuracy on flood depth 

simulated by different datasets with respect to reference dataset in terms of RMSE and those values are 

tabulated in Table 3.  

Among all six datasets, resampled LiDAR datasets (30 m and 90 m resolution) performed better than 

the SRTM and ASTER datasets with 30 m and 90 m resolutions (Table 3). Moreover, it is important to 

note that even the 90 m LiDAR dataset shows higher accuracy (RMSE = 0.95 m) than the 30 m 

resolution SRTM and ASTER datasets (RMSE values are 1.49 m and 1.54 m, respectively). This result 

suggests a decrease in the resolution of LiDAR from 1 m to 90 m does not significantly affect the model 

accuracy in terms of flood depth compared to SRTM and ASTER datasets. However, when considering 

SRTM and ASTER datasets, reduction in resolution from 30 m to 90 m leads to an increase in RMSE 

values which ultimately leads to a significant reduction in accuracy. Another notable result is that RMSE 

increases when resolution decreases from 30 m to 90 m for all datasets, namely LiDAR, SRTM and 

ASTER. Furthermore, 90 m resolution ASTER dataset shows the least accuracy among all datasets with 

RMSE value of 1.63 m. 

 

 

 

 

 

 

Table 1. Values of objective functions. 

Objective 

functions 
Calibration Validation 

Accepted 

criteria 

PBIAS 5.61% 8.56% <25% 

Nash-

Sutcliffe 
0.80 0.55 >0.5 

MRAE 0.11 0.13 <0.25 

 

Table 2. Manning’s roughness coefficients. 

Land use Value 

Agriculture 0.070 

Marsh 0.040 

Paddy 0.045 

Roads 0.030 

Residence 0.075 

River channel 0.035 
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Table 3. RMSE values of different datasets. 

Dataset RMSE (m)  

LiDAR  - 30 m 0.69  

LiDAR  - 90 m 0.95  

SRTM  -  30 m 1.49  

SRTM  -  90 m 1.63  

ASTER - 30 m 1.54  

ASTER - 90 m 1.63  

3.2.2.  Inundation extent. Inundation extent developed by reference model and other six models were 

exported to ArcGIS to produce inundation maps with different depth classification as depicted in Figures 

5 and 6, respectively. Moreover, overlay operations, namely ‘Intersect’ and ‘Union’ were performed on 

inundation extents developed by each model with respect to reference model in order to calculate the F-

statistic (measure of fit) of inundation extents, and those values are tabulated in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among all six models developed, 30 m resolution LiDAR model shows highest overlapping with the 

reference model with an F value of 88.12% whilst 90 m resolution LiDAR model shows an F value of 

70.21%, where both values are higher than the values produced by SRTM and ASTER models with 30 

m and 90 m resolutions. This result implies that reduction in the resolution of LiDAR dataset from 1 m 

to 90 m does not significantly affect the model accuracy in terms of inundation extent compared to 

SRTM and ASTER datasets. Another important result is to highlight that even 90 m resolution SRTM 

dataset show an F value of 58.47%, which is higher than the values produced by the ASTER 30 m 

model. Furthermore, 90 m resolution ASTER model shows the least accuracy among all models with an 

F value of 37.83%. 

The findings of this study agree with some previous studies to a large extent. For instance, in a study 

carried out in Johor, Malaysia [10] to assess the different DEMs (LiDAR- 1 m, 20 m, 30 m and 90 m; 

SRTM- 90 m; ASTER- 30 m; contour maps - 20 m) on 1D hydraulic modelling, the results had indicated 

that even resampled 90 m resolution LiDAR dataset showed higher accuracy than all other datasets used. 

 

Figure 5. Inundation extent map of reference model 

with different depth classifications.   

 

Table 4. F-statistic values. 

Dataset F (%) 

LiDAR - 30 m 88.12 

LiDAR - 90 m 70.21 

SRTM  - 30 m 62.13 

SRTM  - 90 m 58.47 

ASTER - 30 m 40.54 

ASTER - 90 m 37.83 
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Figure 6. Inundation extent maps of all six models with different depth classifications: (a) LiDAR 30 

m; (b) SRTM 30 m; (c) ASTER 30 m; (d) LiDAR 90 m; (e) SRTM 90 m; (f) ASTER 90 m.  

4.  Conclusions and recommendations 

This study primarily assessed how different topographic data sources and their resolutions affect the 

accuracy of 2D flood modelling. This study was carried out at the downstream of Kelani basin, Sri Lanka 

where a 2D model was performed using Nays2D Flood solver. Six different datasets with resolutions of 

30 m and 90 m derived from LiDAR, SRTM and ASTER were compared with a 1 m high resolution 

LiDAR dataset as reference, in terms of flood depth and inundation extent. Among all the datasets used 

in the study, 30 m resolution LiDAR dataset produced higher accurate results in terms of both hydraulic 

contexts, namely flood depth and inundation extents. Moreover, even 90 m resolution LiDAR dataset 

also showed higher accuracy than the SRTM and ASTER datasets with 30 m and 90 m resolutions.  

In contrast, resolution variation from 30 m to 90 m does affect the model results of SRTM and 

ASTER datasets in terms of flood depth and inundation extents (Tables 3 and 4). Apart from the LiDAR 

dataset, 30 m resolution SRTM dataset performed better than other three datasets, namely 90 m 

resolution SRTM, 30 m resolution ASTER and 90 m resolution ASTER. Another notable result is the 

model developed from 90 m resolution ASTER dataset showed the least accuracy than all models in 

terms of flood depth and inundation extent. The findings of the present study are precisely limited to the 

specific site. However, this methodology can be applied to similar basins in Sri Lanka to verify the 

robustness of the results obtained.   
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