
47

ISSN 2756-9160 / November 2020.

 International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings

Reference Model for Large Scale

Intranet of Things Middleware

Mohamed Musthafa Fathima Naja

Department of Information and

Communication Technology

South Eastern University of Sri Lanaka

Oluvil, Sri lanka

mmfnaja@seu.ac.lk

RK Ahmad Rifai Kariapper

Department of Information and

Communication Technology

South Eastern University of Sri Lanaka

Oluvil, Sri Lanka

rk@seu.ac.lk

Mohamed Iqbal Isham Mohamed

Kloudynet Technologies

Kula Lumpur, Malaysia

isham@kloudynet.com

Abstract — Internet of Things (IoT) have been adopted by

industries and enterprises in order to utilize the maximum of

the facilities it supports. However, security is the biggest

challenge in IoT implementation and deployment due to it

residing in public internet. With the aim of addressing this issue,

this research work focuses on developing a middleware that

could be decoupled with the public internet and leverage big

data for large scale enterprises and could be entirely hosted at

on-premise intranet. For this purpose, a middle ware model is

proposed, and a prototype was developed based on the proposed

model and was tested for performance with identified

evaluation. The proposed middleware model shall address the

security concern of enterprises which uses Internet of Things in

their cooperate network.

Keywords —Enterprise IoT, Apache Middleware Offerings,

IoT Hardware

I. INTRODUCTION

One of the most trending topics in the field of information
technology which has emerged in the recent past is the Internet
of Things (IoT). Although the application of IoT in various
fields has drawn the attention of many stakeholders, some of
the drawbacks and inefficient products used for these
application purposes have brought up dissatisfaction too.
Since the phrase itself suggests, the IoT is tightly coupled with
Internet, by means of hardware such as sensors, devices and
servers, middleware such as service buses and message
ingesters and software such as enterprise application which are
needed to be connected together [1]. Hence, they need to be
exposed to the public internet too.

Main problem of IoT deployments and implementations
residing on public internet is security. Although it is definitely
going to be advantageous, especially for enterprises, most
enterprises do not like to expose their IoT deployments to the
public internet. The main concern here is the unauthorized
access. One best solution to this issue is to deploy it with in
their intranet.

The most important component in the IoT architecture is
the middleware[2]. In the current IoT architecture, the
middle-ware service is provided by cloud vendors such as
Microsoft Azure, Amazon Web Service, IBM Bluemix etc.
[3]. All these middle-ware offerings are hosted in a public
cloud in a multitenancy manner. These cloud vendors
normally provide Internet of Things deployments on public
internet as it is the nature by the name "Internet of things".
Also, the enterprise level IoT implementations are done on
public internet, as the middleware which can process big data
and which is reliable and fast in processing telemetries and
messages are only available in the public internet. Even
though Microsoft provide Azure Stack, which enables
enterprises to host the Azure cloud services on-premise of
their local corporate network, the Azure stack requires a very
high-end hardware. On the other hand, Microsoft Azure
provides Azure IoT Edge computing, which is basically an

Edge computing instance supported by Microservice
architecture that could be used in the proposed architecture as
it does not totally decouple the IoT deployment from public
internet [4]. If the IoT middleware is made to work with
intranet connection or corporate network, it would easily
address the concern on security and can be easily adopted by
enterprises which concern much about security.

II. OBJECTIVES

This research focuses on how a middleware can be
decoupled with the public internet and can leverage big data
for large scale enterprises by developing a IoT middleware
architecture which can entirely be hosted at on-premise in the
network latency, which means, the intranet, as data does not
need to pass through data centers hosted in different regions.
The main objective is to build an edge computing architecture
that would be highly scalable for enterprises by reusing the
existing software. Hence, it will definitely improve the
efficiency of the real-time decision making. The outcome is a
middle-ware service that runs on linux platform as most of the
IoT hardware support Linux[5].

III. METHODOLOGY

The proposed reference architecture is specially designed
for large scale use like enterprises which focus much about the
security concern. Apache NiFi is chosen for Data Ingestion
and Device Management. For streaming the message and
analytics, Kafka or Spark Cluster is chosen. For the storage
purpose, HBase is used. Based on the proposed reference
model, a prototype was developed, such that it incorporates
the expected features using the existing software and
components in Apache.

A. Proposed Middleware Model

Fig. 1. Reference Model of the Proposed Middleware for Large Scale

Intranet of Things

Message

from

Devices D
at

a
In

ge
st

io
n

 a
n

d

D
ev

ic
e

M
an

ag
em

en
t

Apache

NiFi

St
re

am
in

g
M

es
sa

ge

A
n

al
yt

ic
s

Kafka,

Spark

Cluster

St
o

ra
ge

HBase

Analytics Dashboard

48

ISSN 2756-9160 / November 2020.

 International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings

B. Prototype Implementation

a. Data Ingestion and Device Management

Data ingestion, which means receiving data from sensors
is the starting point in the architecture. From the beginning
onwards, the devices are managed and the next most important
is the development of Digital Twins of the devices as it is
easier to control all the devices from the software itself rather
than physically setting the devices on or off or other properties.
When it comes to current IoT offerings from famous vendors,
each of them uses such tools like IoTHub (viz. in Microsoft
Azure for example, via cloud offering). Since it is built as the
on-premise architecture based on Linux, Apache NiFi was
chosen. Apache NiFi does not have a dependency on a specific
data format, and it has the capability to consume and publish
MQTT¹ protocol as well. Since Apache NiFi offers the ability
to create custom components, the device twins can be built as
custom components [6]. On the other hand, NiFi has a robust
authentication support as it uses TLS certificates by default for
user authentication which has been configured for Kerberos²
or LDAP³ as well.

b. Streaming Message Analytics

 Once the messages are ingested to the system, then it is
stored. But since the architecture has been built for large scale
domains, the number of messages would introduce bigdata to
the system. Thus, there should be a way to opt-out which
message to store. Apache Kafka is the ideal candidate for the
previously mentioned purpose. The reason for choosing Kafka
was that it could be used for real time streaming and data-
pipeline applications. Kafka provides facility to partition the
data into different topics which can be indexed and be read by
the consumers. This can be also pipelined to either Apache
Spark cluster for near-real-time analytics or can be batch
processed.

c. Storage

 Once the messages are processed, they are either stored or
ignored. This architecture provides a way to store the
messages as well using HBase which is schema-less, built for
horizontally scalable wide tables and ideal for storing both
semi-structured data and structured data.

C. Prototype Evaluation

 The prototype developed based on the middleware model
was tested for performance with the following metrics and the
results were noted accordingly.

a. Number of devices connected concurrently: To evaluate
the number of devices connected concurrently, a number
of emulated devices with a unique ID were connected to
Apache NiFi endpoint and the results was noted.

b. Number of Messages processed concurrently: To evaluate

the number of messages processed concurrently, telemetry
messages in a given format produced from each device
connected to Apache NiFi endpoint was sent through the
streaming message analytics service and results on the
number of concurrently processed messages was noted.

c. Number of Records saved Concurrently: The telemetry
messages thus sent to the streaming message analytics
service was checked for whether it is saved to the HBase
3storage and the number of similar messages saved
concurrently to the storage was evaluated to find the
number of records saved concurrently.

d. Number of Messages Processed in a time window: With
the aim of evaluating the performance fo the prototype,
number of messages processed in a time window was
calculated by identifying the number of messages
processed in a given time (60s-time window).

e. Number of Messages successfully saved in a time window:
The number of messages saved in the HBase storage was
evaluated to find the number of messages saved to it in a
given time (60s-time window).

IV. RESULTS AND DISCUSSION

The prototype developed based on the proposed reference

model was evaluated for expected functionalities. Since the

prototype was developed with the aim of implementation at

large scale intranet of things environment, the developed

prototype was tested for performance based on the identified

metrics.

At the first glance, the middleware’s performance was

tested for the number of devices being connected

concurrently with three servers of different specifications and

the results shows that all the emulated devices which were

connected were running concurrently on all the servers with

different specifications like 2GB RAM and 4 Core CPU, 4GB

RAM and 8 Core CPU and 8GB RAM and 8 Core CPU.

Fig.2 , Fig.3 and Fig.4 shows the analyzed results of the

four performance evaluation metrices as tested with a server

of specifications 2 GB RAM and 4 Core CPU , 4GB RAM

and 8 Core CPU and 8GB RAM and 8 Core CPU respectively

with 100, 1000, 100000 etc. number of messages as the input

which is given in the “x” axis of each graph.

Fig. 2. Performance Evaluation of the Middleware Developed with Server

of Specification - 2GB RAM and 4 Core CPU

1
0

0

9
9

5 9
0

1
7

9
1

0
7

8

1
0

0

9
9

5 9
0

1
7

9
1

0
7

8

1
0

0

1
0

0
0 9
8

9
0

9
8

0
4

5

1
0

0

1
0

0
0 9
8

9
0

9
8

0
4

5

1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Number of messages processed concurrently

Number of messages sotred concurrently

Number of messages processed in 60s time window

Number of messagessotred in 60s time window

49

ISSN 2756-9160 / November 2020.

 International Conference on Advances in Computing and Technology (ICACT–2020) Proceedings

Fig. 3. Performance Evaluation of the Middleware Developed with Server

of Specification - 4GB RAM and 8 Core CPU

Fig. 4 Performance Evaluation of the Middleware Developed with Server

of Specification - 8GB RAM and 8 Core CPU

 Based on the results of the perofrmance evaluation, it is

obvious that when the specificaton of the server is higher, the

expected results for each metric is better compared to the one

ith low specifications. Hence, it could be suggested that one

way to improve the performance on enterprise babis to

process large vloume of messages is to improve the hardware

epcifications as needed. Figure 5 shows the graphical

reprentation of the comparision of messages processed in a

time window by different servers with different hardware

specifications. It highlights the fact of improved performance

with improved hardware specification.

Fig. 5. Graphical Reprensentation of the number of messages proceesd in a

time window (60s) by tdifferent servers

V. CONCLUSION

This research was mainly intended on building an edge
computing architecture with the proposed reference model that
is highly scalable for enterprises that uses huge amount of data
which is said to be “Big Data”. The main idea was to reuse
existing software for the research instead of reinventing a
wheel as it saves time and avoid errors. Hence, Apache was
chosen as it provides several middleware offerings that can run
on Linux with minimal configuration. The main reason for
selecting a middleware service that can run on Linux is that
most of the IoT hardware have Linux support at the first place.

REFERENCES

[1] P. Desai, A. Sheth and P. Anantharam, “Semantic Gateway as a Service
architecture for IoT Interoperability”. IEEE International Conference
on Mobile Services, 2015.

[2] M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev
and V. H. C. de Albuquerque, "A Reference Model for Internet of
Things Middleware," in IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 871-883, April 2018, doi: 10.1109/JIOT.2018.2796561.

[3] Soumya Kanti Datta, Christian Bonnet and Navid Nikaein, An IoT
Gateway Centric Architecture to Provide Novel M2M Services. IEEE
World Forum on Internet of Things (WF-IoT), 2014.

[4] Jiehan Zhou ,Teemu Leppanen and Erkki Harjula , CloudThings: A
common architecture for integrating the Internet of Things with Cloud
Computing. 17th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), 2013.

[5] M. Weyrich and C. Ebert, "Reference Architectures for the Internet of
Things," in IEEE Software, vol. 33, no. 1, pp. 112-116, Jan.-Feb. 2016,
doi: 10.1109/MS.2016.20.

[6] [Available Online]: https://nifi.apache.org/docs.html

1
0

0
0

0

1
0

0
0

0
0

9
5

7
5

4
5

9
6

7
8

9
6

2

1
0

0
0

0

1
0

0
0

0
0

9
5

7
5

4
5

9
6

7
8

9
6

2

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

9
8

8
8

9
7

5

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

9
8

8
8

9
7

5

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Number of messages processed concurrently

Number of messages sotred concurrently

Number of messages processed in 60s time window

Number of messagessotred in 60s time window

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

1
0

0
0

0
0

0
0

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

1
0

0
0

0
0

0
0

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

1
0

0
0

0
0

0
0

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Number of messages processed concurrently

Number of messages sotred concurrently

Number of messages processed in 60s time window

Number of messagessotred in 60s time window

0

2000000

4000000

6000000

8000000

10000000

12000000

2 GB Ram, 4Core CPU

4 GB Ram, 8 Core CPU

8 GB Ram, 8 Core CPU

