
222

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

IMPLEMENTATION OF PARALLEL AHO-CORASICK

ALGORITHM IN PYTHON

M.U.F. Rushda1, J. Niruthika2, S. Pranavan3 & D.R.V.L.B Thambawita4

Correspondence: rushdauwaiz@gmail.com

ABSTRACT

Python is a programming language that has experienced tremendous growth in its developer

community over recent years. Several reasons can be attributed to this including the ease of

use and readability. Data processing is one crucial area where python is popular. It is the

second most used language for data analysis. Currently, many computer science applications

are becoming more and more data-oriented, especially with the advent of machine learning.

Therefore, performance improvement in the data processing field should be looked upon

keenly. Multithreading is one crucial way to performance improvement in the data processing.

Hence, many languages, including python, support multithreading. However, the

multithreading module of CPython, the reference implementation of python, suffers

controversy due to GIL (Global interpreter lock) which prevents two threads from entering

the same section of code simultaneously. While this is advantageous for I/O bound programs,

it is considered as the performance hit for CPU bound programs. In this research, the

performance of the parallel version of the Aho-Corasick algorithm is compared against its

serial version. Aho-Corasick is a widely used algorithm which addresses the problem of exact

string matching, which is one of a significant problem in the computer science domain. The

parallelising technique used is the division of input text among threads. Here, we have

implemented the serial and parallel versions of AhoCorasick in python and found the real-

time elapsed for the parallel portion of the algorithm. The input text size is varied, and graphs

are drawn to interpret the result. Also, we have used benchmark implementations of parallel

and serial versions of the algorithm used for python. The results show that the time

performance of parallel Aho-Corasick algorithm is lower than the serial due to GIL (Global

interpreter lock), while the time performance of the benchmark implementation of the

parallel version is higher than its serial version.

Keywords: Python, Aho-Corasick, parallel processing, multithreading

1. INTRODUCTION

Many computer science applications nowadays, both in entrepreneurial

and scientific domains, are driven by data processing. This is especially

true as large amounts of data coming into usage with the advent of

machine learning. Volume, velocity, variety and variability can be

identified as four important properties of data, according to Gartner’s

definition of big data. Data processing methods should be able to

handle these properties appropriately. Two main considerations of data

processing in this regard are:

1. Algorithm

2. Implementation

Both algorithm and implementation should be able to support

parallelizing, to gain performance advantage for high volume high

1 Department of Computer Science and Technology, Uva Wellassa University of Sri Lanka.
2 Department of Computer Science and Technology, Uva Wellassa University of Sri Lanka.
3 Department of Computer Science and Technology, Uva Wellassa University of Sri Lanka.
4 Department of Computer Science and Technology, Uva Wellassa University of Sri Lanka.

223

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

velocity data. Data parallelism, which is used in this research, is one

major method of parallelizing algorithms. Similarly, Multithreading,

which is using different execution lines within a process, is one major

method used for parallelized implementations. Thus, programming

languages used to implement the algorithms should possess efficient

threading concepts.

Python is the most popular programming language used to implement

data analysis applications, second only to R, and the growth rate of

python is greater than R. There are many reasons behind this; most

important ones are,

1. Ease of use allows for rapid prototyping and iteration. Hence

different development options can be explored quickly.

2. Python has low LOC (lines of code), which is now considered as

one important measure of performance in software industry as

the community strive to deny premature optimizations. This is

compliant with python’s own philosophy, “there should be one

and only one- obvious way to do it”

3. Due to the above reasons, python have an active community of

great developers. It has an extensive range of purpose-built

modules and libraries.

While these make python fit for implementing data processing

algorithms, there is a need to analyze the multithreading performance

of python for common important algorithms dealing with large amounts

of data.

Aho-Corasick is one such algorithm used for string matching problem.

In computer science, string matching problem is one fundamental

problem, facing great challenge because of the rapid growth of

information searching. Aho-Corasick algorithm is one major string

matching algorithm used in, intrusion detection, plagiarism detection,

bioinformatics, digital forensics, text mining etc.

This research analyses the speed performance metric of parallelized

Aho-Corasick algorithm implemented in python. C language

implementation of the same algorithm is considered as the bench mark

implementation.

224

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

1.1. Background

1.1.1. Python as a growing language

Python is an extremely popular, high level, general-purpose

programming language. Python is the number one ranking language

reported in the IEEE spectrum of top ten programming languages of

2017. Also, Python is the language that shows consistent highest

growth index in the TIOBE index for programming languages in 2017.

Python is an interpreted language. The reference implementation of

python is written in C, hence the name CPython, while there are other

implementations as Jython, Cython and the current PyPy. CPython

remains the default and widely used implementation of Python.

Python’s design support high extensibility. Python is often used as a

glue language, integrating with other languages to extend their

functionalities. Its high extensibility also allows for large number of

libraries.

a. Parallel processing in CPython

Python threads are real system threads that are they are completely

managed by the operating system. The default Python interpreter was

designed to have and a thread-safe mechanism, called “GIL” (Global

Interpreter Lock). That is, only one thread can execute at a time. This

prevents python “threading” module, the POSIX thread module for

threads in python from gaining performance advantage by multiple

CPU cores.

The reasons behind GIL can be considered as,

1. Increased speed of single-threaded programs

2. Easy integration which C libraries that are usually not thread-

safe

3. Implementations that require explicit locking are easier

While these may be advantages for I/O bound programs, GIL is a

factor of controversy among python community due it’s hindrance to

parallel CPU bound programs.

225

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

1.1.2. Aho-Corasick

As opposed to traditional string-matching algorithm, Aho-Corasick

algorithm can find occurrences of all patterns in each input string in

one traversal.

Aho-Corasick algorithm consist 2 distinct steps as follows,

1. Constructing finite state machine

Constructing a Trie with input pattern words

Traversing the text over the finite state machine to spell out the

patterns

Figure 1. State machine of Aho-Corasick algorithm

2. Traversing the Finite state machine and reading each character

from input, storing the result.

a. Parallelizing Aho-Corasick algorithm

Aho-Corasick Algorithm can be parallelized in various ways. Some such

ways are,

1. Dividing the state matching building by the division of patterns

among threads

2. Dividing the input text file among threads

3. Allocating single thread to each character in the input string (no

failure links needed)

In our implementation, we have divided the text file equally among the

threads.

226

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

1.2. Motivation

Currently there is a mass movement of developer community toward

the programming language of Python. This is even more encouraged

with Google’s decision to go with python in recent years. There are

many reasons behind this movement, even though the performance of

python is no superior to other languages as Java, C, C# etc. One of

such reason is its extensibility. While this is the case there are

controversies about the core implementation of Python. GIL (Global

Interpreter Lock) is one area of CPython arguments where there are

many suggestions and proposals arise for change. But still the

question remains as to whether GIL is harmful to your multithreaded

programs. As, this is the scenario among python community, we

developed interest in knowing the performance of python

multithreading for some important I/O bound computational problems.

Such our research idea is on implementing a python version of parallel

Aho-Corasick algorithm, as there are no such known implementations,

and gaining the idea of its performance improvement over its serial

implementation. String-matching algorithms are basic components

used in implementations of practical software existing under most

operating systems and Aho-Corasick is one commonly used algorithm

for string matching.

1.3. Goals

• Implementation serial version of Aho-Corasick in Python,

suitable for processing large input files

• Implementation parallel version of Aho-Corasick in Python,

suitable for processing large input files

• Comparing the performance of parallel Aho-Corasick and serial

Aho-Corasick in python

1.4. Achievement in brief

We have developed python serial and parallel programs for the

AhoCorasick algorithm. The programs were tested with files of length

ranging from 15208907 characters to 76041088 characters. We have

plotted the real time spent in the parallelized portion of the serial and

parallel versions. The results show that the time performance of parallel

Aho-Corasick algorithm is lower than the serial, while the time

performance of the benchmark implementation of parallel version is

higher than its serial version. The results show that the time

performance of parallel Aho-Corasick algorithm is lower than the serial,

227

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

while the time performance of the benchmark implementation of parallel

version is higher than its serial version.

1.5. Literature Survey

1.5.1. Python and parallel processing

Python have found great resurgence in recent years. Recent trends of

python have reached Google’s App Engine (Google Cloud Platform,

2017), Drop box desktop client (mkennedy, 2017) etc. It shows high

growth index in the TIOBE index for programming languages

(Tiobe.com, 2017).

Though python is gaining popularity as a general-purpose language its

major popularity lies in data processing. Many researches have been

conducted based on python’s data processing libraries. The research

on geographic information systems (Sharma, 2017) explores the

automatic conversion of data models into python language. Also,

research is conducted to using programming to collect, create, or

repurpose computerized data to investigate diverse parts of Facebook

long range informal communication benefit (Sharma, 2017).

The usage of python in data processing domain attracts attention

towards its multithreading capabilities. Python’s threads are real

threads that are managed by host operating system (GIL, 2017). The

reference implementation of python, CPython possess global

interpreter lock, or GIL, a mutex that protects access to Python objects

(Wiki.python.org, 2017), preventing multiple threads from executing

Python bytecodes at once. The presence of the lock is often debated in

the python community (reddit, 2017). The major negative concern is that

it prevents multithreaded CPython programs from taking full advantage

of multiprocessor systems. The positive argument is that GIL is an

interpreter level lock rendering advantages to the CPython interpreter

by, protecting the interpreter’s memory by keeping garbage collection

working and maintains the thread safety of memory (jesse noller, 2017).

Though this is the situation with the CPython’s threading library called

“threading”, multicore usage can be achieved in CPython via

multiprocessing, spawning several processes within which threads can

be operated. This is done via python’s “multiprocessing” library. But this

approach of parallelizing must combat the overhead of managing

shared memory between processes (Toptal Engineering Blog, 2017).

Also, C extensions aren't bound by the GIL; many libraries for Python

(such as the math-and-stats library Numpy) can run across multiple

228

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

cores. But opting out for C to avoid GIL will drive more programmers

away from Python and toward C (Yegulalp, 2017).

1.5.2. Aho-Corasick algorithm

Many of complex computer applications are becoming more and more

data oriented. String matching is one important part of such applications

as it helps to find patterns and derive conclusions based on them.

AhoCorasick is a standard string matching algorithm. It is used in spell

checkers, spam filters, intrusion detection, search engines, plagiarism

detection, bio informatics, Digital forensics and etc. (Soni, Vyas and

Sinhal, 2014). It is an exact set matching algorithm that can match

multiple patterns simultaneously, the time complexity does not depend

on the number of keywords (Aho and Corasick, 1975) (Bhukya and

Somayajulu, 2011). While the naive approach of string matching

algorithms has a time complexity of O (n * m), most implementations of

Aho-Corasick have O (n + m + z) time complexity, where n is the size

of text string, m is the input size of pattern string and z is the number of

matches. Aho-Corasick algorithm combines the Knuth-Morris-Pratt

algorithm with those of finite state machine the most important aspect

of this algorithm is the amount of improvement the finite state algorithm

gives over more conventional approaches (Aho and Corasick, 1975).

The Aho-Corasick algorithm is one of the most widely used algorithms.

The algorithm allows the matching of multiple patterns in a single pass

over a text. This is achieved by using the failure links created during the

construction phase of the algorithm. The Aho-Corasick presents a major

drawback when parallelized, as some patterns may be split over two

different chunks of text. Each thread is required to overlap the next

chunk of data by the length of the longest pattern -1 (chana S. Vaidya,

2015). Lin et al presented an alternative method for multi-pattern

matching on GPU (Lin et al., 2010). Here, each thread is assigned to a

single letter in the text. If a match is recorded, the thread continues the

matching process until a mismatch. When a mismatch occurs, the

thread is terminated. As the number of computational units is large this

algorithm is most suited for GPU applications (Nehemia and Lim.,

2017). The algorithm also allows for coalesced memory access during

the first memory transfer, and early thread termination.

229

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

2. METHODOLOGY

 Figure 2. Flow of Methodology

• Literature Survey

A systematic literature survey was conducted in the areas of Python,

its multithreading approach and its multithreading related libraries.

Also systematic literature survey on Aho-Corasick, its parallel

algorithms and different implementations. Research papers, articles as

well as internet forums were considered.

• Implementation of algorithms

There were four implementations of the Aho-Corasick algorithm as,

1. Serial Aho-Corasick algorithm in C

2. Serial Aho-Corasick algorithm in Python

3. Parallel Aho-Corasick algorithm in C

4. Parallel Aho-Corasick algorithm in Python

Here the implementations in C were to act as a benchmark

implementation for to find the performance improvement of

parallelizing Aho-Corasick algorithm in the absence of GIL. Testing

Manual testing for the correctness of the results obtained was done with

the aid of file comparison software.

230

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

• Finding the execution time of algorithms

All algorithms were executed on same platform (See Appendix).

Different length text files were input to the same state machine. Real

time spent by a core was calculated after checking the correctness of

the results. Graphs were plotted for all executions as number of text

lines vs the time of execution

3. DISCUSSION AND RESULTS

3.1. DISCUSSION

Final implementations with large input, pattern files are checked

by,

1. Implementing the algorithms by limiting the characters at

random points and applying traditional string matching

algorithm to find match

2. Sparse some special character randomly between the text

(not in nucleotide sequence) so that the results are limited.

Then checking at the result index.

3. Results of all the different implementations are obtained and

compared at random indices.

4. Using software as gEdit and Araxis to compare the results

Also, after plotting the results the shapes of the graphs were

analyzed to see compliance with the time complexity of the

portion under timing. Regression analysis was used on the

graphs of all 4 implementations the graphs showed linear

property, which is in compliance with the complexity (O (n)))

231

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

3.2. RESULTS

Figure 3. Time vs Input File Size

According to this graph, for every input file size the real time

taken for C 4-thread is lesser than the real time taken for C

serial version. The difference is higher for large input sizes.

Figure 4. Python Time vs Input Size

According to this graph, for every input file size the real time

taken for Python 4-thread is higher than the real time taken for

Python serial version. The difference is higher for large input

sizes.

4. CONCLUSION

The results show that the time performance of parallel

AhoCorasick implemented in Python is lower than its Serial

version while the time performance of parallel Aho-Corasick

232

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

implemented in C is higher than its serial version. This shows

that the effect of GIL of Python is considerate for Aho-Corasick

algorithm. Therefore is Python is not suitable for parallelizing

Aho-Corasick algorithm as the CPU usage of the algorithm may

be considerate compared to its I/O usage.

5. REFERENCES

(@mkennedy), M. (2017). Transcripts Episode #30 Python Community and

Python at Dropbox - [Talk Python To Me Podcast]. [Online] Talkpython.fm.

Available at: https://talkpython.fm/episodes/transcript/30/python-

communityand-python-at-dropbox [Accessed 28 Nov. 2017].

Dabeaz.com. (2017). Cite a Website - Cite This For Me. [online] Available at:

http://www.dabeaz.com/python/UnderstandingGIL.pdf [Accessed 28 Nov.

2017].

GIL, W. (2017). Why Was Python Written with the GIL? [Online]

Softwareengineering.stackexchange.com. Available at:

https://softwareengineering.stackexchange.com/questions/186889/why-

waspython-written-with-the-gil [Accessed 28 Nov. 2017].

Google Cloud Platform. (2017). Python on Google App Engine | App Engine

Documentation | Google Cloud Platform. [Online] Available at:

https://cloud.google.com/appengine/docs/python/ [Accessed 28 Nov. 2017].

Hasib, S., Motwani, M. and Saxena, A. (2013). Importance of Aho-Corasick

String Matching Algorithm in Real World Applications. International Journal of

Computer Science and Information Technologies, 4(3), pp.467-469.

jesse noller. (2017). Python Threads and the Global Interpreter Lock. [Online]

Available at: http://jessenoller.com/blog/2009/02/01/python-threads-and-

theglobal-interpreter-lock [Accessed 28 Nov. 2017].

reddit. (2017). Why Was Python Written with the GIL? • R/Python. [Online]

Available at:

https://www.reddit.com/r/Python/comments/3fqpys/why_was_python_written_

with_the_gil/?st=jaivx1b0&sh=603c2c09 [Accessed 28 Nov. 2017].

Sharma, A. (2017). An Approach to Facebook Post Analytics Using Python and

Advance Open Source Tools. International Journal of Emerging Research in

Management &Technology, 6(6), pp.78-82.

Tiobe.com. (2017). TIOBE Index | TIOBE - The Software Quality Company.

[Online] Available at: https://www.tiobe.com/tiobe-index/ [Accessed 28 Nov.

2017].

Toptal Engineering Blog. (2017). Conquer String Search with the Aho-

Corasick Algorithm. [Online] Available at:

233

Proceedings of 9th International Symposium (Full Paper), South Eastern University of Sri
Lanka, Oluvil. 27th – 28th November 2019, ISBN: 978-955-627-189-8

https://www.toptal.com/algorithms/ahocorasick-algorithm [Accessed 28 Nov.

2017].

Wiki.python.org. (2017). Global Interpreter Lock - Python Wiki. [Online]

Available at: https://wiki.python.org/moin/GlobalInterpreterLock [Accessed 28

Nov. 2017].

Yegulalp, S. (2017). Multicore Python: A tough, worthy, and reachable goal.

[Online] InfoWorld. Available at:

https://www.infoworld.com/article/3079037/open-source-

tools/multicorepython-a-tough-worthy-and-reachable-goal.html [Accessed 28

Nov. 2017].

Soni, K., Vyas, R. and Sinhal, A. (2014). Importance of String Matching in Real

World Problems. International Journal of Engineering and Computer Science,

3(6), pp.6371 - 63 7 5.

Aho, A. and Corasick, M. (1975). Efficient string matching: an aid to

bibliographic search. Communications of the ACM, 18(6), pp.333-340.

Bhukya, R. and Somayajulu, D. (2011). Exact Multiple Pattern Matching

Algorithm using DNA Sequence and Pattern Pair. International Journal of

Computer Applications, 17(8), pp.32-38.

chana S. Vaidya, P. (2015). Optimization of Parallel Aho-Corasick Multi pattern

Matching Algorithm on GPU. International Journal of Innovative Research in

Computer and Communication Engineering, 03(06), pp.5191-5200.

C.-H. Lin, S.-Y. Tsai, C.-H. Liu, S.-C. Chang, and J.-M. Shyu, "Accelerating

string matching using multi-threaded algorithm on GPU, "in Global

Telecommunications Conference (GLOBECOM 2010), 2010IEEE, Dec 2010,

pp. 1–5.

Nehemia, R., Lim, C., Galinium, M. and Widianto, A. (2017). Implementation

of Multi pattern String Matching Accelerated with GPU for Intrusion Detection

System. IOP Conference Series: Materials Science and Engineering, 190,

p.012023.

