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Abstract 

The objective of this paper is to analyse and modelling the volatility of Colombo Consumer Price Index (CCPI) in Sri Lanka 
using monthly data from January 2008 to April 2014. Three types of GARCH models (GARCH, TGARCH and EGARCH) 
were used for this study. Using various specifications for mean equation, study estimated GARCH (1, 1), TGARCH (1, 1) and 
EGARCH (1, 1) for CCPI. The estimation results reveal that ARMA (1, 0) - EGARCH (1, 1) comes out to be most appropriate 
specification for modelling CCPI volatility. The study finds that, no evidence of symmetry in the response of CCPI volatility 
to negative and positive shocks. 
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Introduction 

Measuring volatility of CCPI is important for policy    maker because it provides them with guidance in formulating polices 
for achieving price stability. The modeling and forecasting is usually carried out in order to provide an aid to decision making 
and planning the future.  Analysing volatility of CCPI are important inputs for government, businesses sector, policy makers, 
investors, workers and various individuals for various applications.  
This study aims at modeling CCPI volatility using GARCH-family models and choosing the most suitable model among them. 
The ARCH model was first introduced by Engle (1982) for capturing time variant variance exhibited by almost all financial 
time series and many economic time series. The generalized version of ARCH model (GARCH model) was formulated by 
Bollerslev (1986). 
Economic literature on issue of CCPI volatility is concerned with the positive relation of inflation level and conditional 
variance. Goudarzi and Ramanarayanan (2010) employed GARCH model on daily Bangalore stock price index series from 
2000 to 2009 and obtained  the GARCH (1, 1) model explains volatility of the Indian stock markets satisfactorily. Igogo 
(2010) used GARCH family models on monthly real exchange rate of Tanzania from 1968 to 2007 and found GARCH (1, 1) 
model was violated the non-negativity condition and the EGARCH (1, 1) model to measure the real exchange rate volatility.  
Awogbemi and Oluwaseyi (2011) conducted a study to determine the presence of the volatility in monthly CPI prices of five 
selected commodities over a period from 1997 to 2007 in Nigerian market. They found that the GARCH (0, 1) model is the 
best model to determine the volatility of prices. Khalafalla Ahmed (2010) employed GARCH family models to determine the 
relationship b
2005. The EGARCH (1, 1) model was found to correctly specify and estimate the conditional variance of inflation with 
possibility of a simultaneous feedback relationship between inflation and uncertainty. 

Materials and Methods  

Data: The secondary data on monthly CCPI from January 2008 to April 2014 were considered for the analysis and it was 
collected from Department of Census and Statistics. 
Unit Root Test: The stationary of data is usually described by time series plots and correlogram. The unit root test determines 
whether a given series stationary or non-stationary. The Augmented Dickey-Fuller (ADF) test is mostly used to check 
stationary. In this paper ADF test has been used. 
GARCH Model: The Generalized ARCH (GARCH) model was developed by Bollerslev (1986). The specification of the 
conditional variance equation for GARCH (1, 1) model is given by: 

2
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where 110 , and  are parameters. 

TGARCH Model: The Threshold GARCH (TGARCH) model was introduced by the works of Zakoian (1990) and Glosten, 
Jaganathan and Runkle (1993). The main target of this model is to capture asymmetric in terms of negative and positive 
shocks. The specification of the conditional variance equation for TGARCH (1, 1) model is given by: 
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Where dt takes the value of 1 for 0tu and 0 otherwise. If 0  there is asymmetry while if 0 the news impact 
symmetry. 
EGARCH Model: The exponential GARCH (EGARCH) model was developed Nelson (1991), and the variance equation for 
this model is given by:  
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Where and,,  are parameters to be estimated. The log of the variance series makes the leverage effect exponential 
instead of quadratic and therefore estimates of the conditional variance are guaranteed to be non-negative. The EGARCH 
models allow for the testing of asymmetry. When, then positive shocks generate less volatility than negative shocks. 
Model Selection Criteria: The following statistical measures were used to find an appropriate model forCCPI. 
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Where; k = number of coefficient estimated,  rss = residual sum of square, sst = sum of square total,  n = number of 
observations 

Results and Discussions 

1 Descriptive Statistics of CCPI 

The basic analysis of CCPI is shown in table 1. 

Table 1: Descriptive statisticsof CCPI 

Statistic Measures Values 
 

Mean 

Median 

Maximum 

Minimum 

Standard Deviation 

Skewness 

Kurtosis 

Jarque- Bera 

Confidence Interval 

for CCPI (at 5%) 

150.40 

150.60 

178.40 

118.70 

17.18 

0.205 

1.776 

5.27 

[0.072] 

[146.47,154.32] 
 

From the table 1, the mean of CCPI is 150.40 and its standard deviation is 17.18. According to the Jarque Bera statistic, the 
CCPI is normally distributed at 5% significance level, (p=0.072). The mean of CCPI series lies between (146.47, 154.32) at 
5% significance level. 

The time series plot for the monthly CCPI series is shown in figure 1. 
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Figure 1: Time series plot for CCPI [Jan 2008 April 2014] 

From the figure 1, it can easily be seen that CCPI has been increasing over time and variance is increasing with time. Thus, it 
is obvious that the series is not stationary. Also, this result is confirmed by unit root test and this result is shown in table 2. 

Table 2: Results of the unit root test for CCPI 

ADF Test Statistic 
t-Statistics Prob. 

-2.7773 0.2103 

Test Critical 
Values 

1% Level -4.0868 
 

5% Level -3.4717 
 

Table 2 indicates that, the null hypothesis of the series is non stationary could not be rejected for CCPI [p=0.2103]. Therefore, 
CCPI series is non-stationary. Then, the CCPI series was transformed into the log differenced of CCPI series (LogDCCPI) and 
the time series plot and normality plot of this series were obtained and shown in figure 2 and figure 3 respectively. 

 
Figure 2: Time series plot for Log difference of CCPI. 

 
Figure 3: Normality plot for Log difference of CCPI. 

From the figures 2 and 3, there is a high volatility exists in log difference of CCPI (kurtosis=4.622).   

Table 3: The results of unit root test for LogDCCPI 

ADF Test Statistic t-Statistics Prob. 
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Mean       0.005432
Median   0.002961
Maximum  0.040572
Minimum -0.010065
Std. Dev.   0.009256
Skewness   1.003475
Kurtosis   4.622345

Jarque-Bera  20.81204
Probability  0.000030
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-5.4175 0.0001 

Test Critical 
Values 

1% Level -4.0887 

 5% Level -3.4726 
 

Table 3 indicates that, the null hypothesis of the series is non stationary is rejected for the log difference of CCPI [p=0.0001]. 
Hence, the log difference of CCPI series is stationary.  
2. ARMA model for log differenced transformed of CCPI  

The correlagram of sample ACF and PACF for LogDCCPI series (Figure 4) was considered for identification of suitable AR 
and MA orders. 

 
Figure 4: Sample ACF and PACF for LogDCCPI 

According to the Figure 4, the sample ACF has one significant autocorrelation at lag 1 and sample PACF has one significant 
coefficient at lag 1. Thus it can be hypothesized in the ARMA model to be fitted MA order to be andAR order to1. Thus, the 
following models were considered as possible models to represent the original series. They are i) ARMA (1, 1), ii)ARMA 
(1, 0), and iii) ARMA (0, 1). The estimates of the above ARMA models were shown in table 4. 

Table 4: ARMA models for DLCCPI 

Models Parameter 
Estimates 

P-
Value AIC , SIC Log likely 

hood DW 

ARMA (1,1) 
C=0.005 

AR(1)= 0.222 
MA(1)=0.134 

 

0.001 
0.385 
0.621 

-6.658, -6.565 249.136 2.013 

ARMA (1,0) 

 

C=0.005 
AR(1)=0.327 

 

0.001 
0.003 

 

-6.683, -6.621 249.288 1.971 

ARMA (0,1) 
 

C=0.005 
MA(1)= 0.361 

 

0.000 
0.001 -6.618, -6.556 248.195 1.957 

 

Table 4 indicates that the coefficient of AR (1) of ARMA (1,0) model is significant at 5% significance level (p-value = 0.003). 
Results in table 4 also indicate that of the three models the maximum log likelihood estimate and the lowest AIC and SIC 
values were obtained by ARMA (1, 0) model. Thus it can be concluded the best model out of these three models is ARMA (1, 
0). 

3 GARCH models for log differenced transformed of CCPI 

This study investigates the issue of CC -family models. The result of ARMA 
(1, 0)-GARCH (1, 1) model is shown in Table 5. 

Table 5: ARMA (1,0)-GARCH (1,1) Model 

Variable Coefficient  Std. Error Z-Statistic Prob. 
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C 
 

AR(1) 
 

 
0.0038 

 
0.3137 

 
0.0013 

 
0.0783 

 
2.9450 

 
4.0047 

 
0.0032 

 
0.0001 

Variance Equation 
 

C 
 

Resid(-1)^2 
 

GARCH(-1) 

3.10x10-6 
 

-0.1023 
 

1.0451 

5.12x10-7 
 

0.0004 
 

0.0036 

6.054 
 

-269.340 
 

294.129 

0.0000 
 

0.0000 
 

0.0000 
 

[AIC= -6.862, SIC=-6.706, Log Likelihood=258.89]  
The table 5 indicates that the coefficient of related with AR (1) in equation for mean of ARMA (1,0)-GARCH(1,1) is  
statistically significant. Also, the equation for variance, the both coefficients of ARCH and GARCH terms are statistically 
significant. 

The estimated GARCH (1, 1) model is:  
2

11
6 102.0045.1101.3 ttt uX  

GARCH can capture asymmetric response of negative and positive shocks on volatility. This asymmetric response of volatility 
is termed as leverage effect. A summary result of ARMA (1, 0)-TGARCH (1, 1) is shown in table 6. 

Table 6: ARMA (1, 0)-TGARCH (1,1) Model 

Variable Coefficient  Std. Error Z-Stat  Prob. 
 

C 
 

AR(1) 
 

 

0.0034 
 

0.3119 

 

0.0014 
 

0.0695 

 

2.3298 
 

4.4857 

 

0.0198 
 

0.0000 

Variance Equation 

C 
 

Resid(-1)^2 
 

Resid(-
1)^2*(Resid(-1)<0) 

 
GARCH(-1) 

3.40x10-6 
 

-0.0955 
 
 

0.0389 
 

1.0193 

2.04x10-6 
 

0.0408 
 
 

0.1408 
 

0.0627 

1.6630 
 

-2.2792 
 
 

0.2764 
 

16.2440 

0.0963 
 

0.0227 
 
 

0.7823 
 

0.0000 

 

[AIC= -6.602, SIC=-6.615, Log Likelihood=257.673]  

The table 6 indicates that the coefficient related with AR(1) in equation for mean of ARMA (1,0)-TGARCH(1,1) is  
statistically significant. Also, the equation for variance, the coefficients of ARCH and GARCH terms are statistically 
significant. Other two terms are not statistically significant. Although, table 6 shows that the coefficient of the [Resid (-
1)^2*(Resid(-1)<0)] term is positive and statistically significant, this is evidence of no symmetric response volatility of 
differenced log CCPI to negative and positive shocks. 

The estimated TGARCH (1, 1) model is:  
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Another model which can capture asymmetry in response of conditional variance to negative and positive shocks is EGARCH. 
A summary result of ARMA (1, 0)-EGARCH (1, 1) is reported in Table 7. 

Table 7: ARMA (1, 0)-EGARCH (1,1) Model 

Variable Coefficient  Std. Error Z-Stat  Prob. 
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C 
AR(1) 

 

 

0.0038 
0.3049 

 

0.0011 
0.00714 

 

3.4984 
4.2698 

 

0.0005 
0.0000 

Variance Equation 
[ 

C 

ABS(RESID(-
1)/@SQRT(GARCH(-

1))) 

RESID(-
1)/@SQRT(GARCH(-1))  

GARCH(-1) 

LOG(GARCH(-1)) 

-18.978 

0.5677 

-0.0629 

-0.8812 
 

0.5104 

0.1179 

0.0882 

0.0533 

-37.185 

4.8145 

-0.7136 

-16.579 

0.0000 

0.0000 

0.4755 

0.0000 

a 

[AIC= -6.908, SIC=-6.722, Log Likelihood=261.62]  

The table 7 indicates that the coefficients related with AR (1) in equation for mean of ARMA (1, 0)-EGARCH (1, 1) is 
statistically significant. Also, the in equation for variance, the coefficients of three terms are statistically significant. Although, 
table 7 shows that the coefficient of the [RESID (-1)/@SQRT (GARCH (-1)) GARCH (-1)] term is negative and not 
statistically significant, this is evidence of no symmetric response volatility of differenced log CCPI to negative and positive 
shocks. 

The estimated EGARCH (1, 1) model is:  
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4 Model Selection  

In the model selection, the log likelihood, AIC and SIC values from each estimated models were computed. Using these 
statistics, to estimate which model is a better estimate for CCPI. The model with the lowest AIC and SIC values and the 
highest value of log likelihood are concluded to be the better model. The results are reported in Table 8. 

Table 8: Model selection results 
 

Models AIC  SIC Log 
likelihood  

ARMA(1,0)-GARCH(1,1) -6.862 -6.706 259.89 

ARMA(1,0)-TGARCH(1,1) -6.602 -6.615 257.67 

ARMA(1,0)-EGARCH(1,1) -6.908 -6.722 261.62 
 
Table 8 indicates that both AIC and SIC values from EGARCH (1, 1) model is the lowest compared with other two models. 
Also, log likelihood value is high for EGARCH (1, 1) model. Therefore, it shows that the EGARCH (1, 1) is the best model to 
determine the volatility of monthly CCPI series. 
5 Diagnostics checking for EGARCH (1, 1) model 

To validate the assumptions of residuals, the following hypotheses are to be considered. 

1. H0 : There is no serial correlation in the residuals. 

2. H0 : There is no ARCH effect in the residuals. 

3. H0 : The residuals are normally distributed. 

In order to check the serial correlation of residuals, the correlagram of squared residual was carried out and the result is shown 
in figure 5. 
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Figure 5: Correlagram for sample ACF and PACF of squared residuals 

Figure 5 shows that, the all p-values of autocorrelations are not statistically significant at 5% significance level. Therefore, 
residuals are not serially correlated. 
In order to check the ARCH effect of residuals, the ARCH LM test was carried out and the result is shown in Table 9. 

Table 9: Result of ARCH effect 

ARCH Test 

F-statistic 0.4478 
[0.5056] 

Obs*R-squared 0.4575 
[0.4988] 

 

Table 9 indicates that the Obs*R-squared is not significant [p=0.4988] at 5% significance level. Therefore, the hypothesis of 
no ARCH effect cannot be rejected. Hence, there is no ARCH effect in the residuals. 

In order to check the normality of the residuals, the Jarque-Bera test was carried out and the result is shown in figure 6. 

 
Figure 6: Normality plot 

Figure 6 shows that, the respective p-value of Jarque-Bera statistic is not significant at 5% significance level [p=0.379]. Thus, 
it is confirmed that residuals series is normally distributed. Based on the above detailed analysis of residuals, it can be 
confirmed that the EGARCH (1, 1) model is satisfied all the diagnostic tests. Hence, the EGARCH (1, 1) model is the best 
model to modelling the volatility of CCPI. 

Conclusions and Recommendations 

This study aimed to modeling volatility of CCPI using GARCH family models. The CCPI data is not stationary at level. By 
differences of log transformed the series of the CCPI data becomes stationary. Then various GARCH models were estimated. 
The comparative performance of these GARCH models have checked and verified by using the model selection procedure 
(AIC and SIC). The comparison indicates that the EGARCH (1, 1) model as the best model to modelling the volatility of 
CCPI. 
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