
5th International Symposium 2015 – IntSym 2015, SEUSL 
 

223 
 

EXACT MODELS FOR ANISOTROPIC FLUID SPHERE 

K. Komathiraj 

Department of Mathematical Sciences, Faculty of Applied Sciences, South Eastern 

University of Sri Lanka 

komathiraj@seu.ac.lk 

 

ABSTRACT: Two categories of exact solutions are found to the Einstein field equations for an 

anisotropic fluid sphere with a particular choice of the anisotropic factor and one of the 

gravitational potentials. The condition of pressure isotropy is reduced to alinearsecond order 

differential equationwhich can be solved in general.Consequentlywe can find exact solutions to 

the Einstein field equations correspondingto a static spherically symmetric gravitational potential 

in terms of elementaryfunctions, namely polynomials and product of polynomials andalgebraic 

functions.These solutions contain particular solutions found previously includingmodels of 

isotropic relativistic spheres 
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1. INTRODUCTION 

Exact solutions to the Einstein field equations with anisotropic matter have been 

studied   by many investigators in recent years. Such Solutions for static spherically 

symmetric interior spacetimes are important in describing compact objects in 

relativistic astrophysics. Researchers have attempted to introduce different 

approaches of finding solutions to the field equations. Hansraj and Maharaj (2006) 

found solutions to the Einstein-Maxwell system with a specified form of the electrical 

field with isotropic pressures. These solutions satisfy a barotropic equation of state 

and regain the Finch and Skea (1989) model. Some of the researchers considered 

anisotropic pressures in the presence of the electromagnetic field with the linear 

equation of state of strange stars with quark matter. The approach of Esculpi and 

Aloma (2010) is interesting in that it utilizes the existence of a conformal symmetry in 

the spacetime manifold to find a solution. These exact solutions are relevant in the 

description ofdense relativistic astrophysical objects.  

In order to integrate the field equations, various restrictions have been placed by 

investigators on the geometry of space time and the matter content. Mainly two 

distinct procedures have been adopted to solve these equations for spherically 

symmetric static models. Firstly, the coupled differential equations are solved by 

computation after choosing an equation of state. Secondly, the exact Einstein 

solutions can be obtained by specifying the geometry and the form of the anisotropic 

factor. The later technique has been used by Takisa and Maharaj (2013) to produce 

solutions in terms of special functions and elementary functions that are suitable for 

the description of relativistic charged stars.  
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The principal objective of this work istwofold.  Firstly, we seek to model a relativistic 

sphere with anisotropic matter which is physically acceptable. We require that the 

gravitational fields and matter variables are finite, continuous and well behaved in 

the stellar interior and the solution is stable with respect to radial perturbations. 

Secondly, we seek to regain an isotropic solution of Einstein field equations which 

satisfy the relevant physical criteria when the anisotropy factor vanishes. This ideal is 

not easy to achieve in practice and only a few examples with the required two 

features have been found thus far.  The main objective of this paper is to provide 

systematically a solution to Einstein equations with anisotropic matter whish satisfy 

the above two conditions. In Section 2, the Einstein field equations for the static 

spherically symmetric line element with anisotropic matter is expressed as an 

equivalent set of differential equations utilizing a transformation. We chose particular 

forms for one of the gravitational potentials and the anisotropic factor, which enables 

us to obtain the condition of pressure anisotropy in the remaining gravitational 

potential.  This is the master equation which determines the solvability of the entire 

system.  Exact solutions to the Einstein field equations in terms of a series and 

elementary functions are provided in section 3. Physical properties of the solutions 

are briefly discussed in Section 4. 

 

2.  METHODOLOGY 

Assume that the interior of a relativistic star should be spherically symmetric. 

Therefore there exists coordinates time and ( r, θ, φ)spherical coordinates such that 

the line element is of the form  

        ( )       ( )      (            )(1) 

 

where ( ) and  ( ) are arbitrary functions related to the gravitational potentials. The 

system of Einstein field equations becomes for the line element (1) 
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The quantity   is the energy density,    is radial the pressure,  is the tangential 

pressure and  is   the anisotropic factor. This system governs the behaviour of the 

gravitational field for an anisotropic perfect fluid.  To solve thissystem it is 

necessary to choose two of the variables. 

At this point we could choose a barotropic equation of state      ( ) Howeverthis 

is an approach that we intend to follow in future work.In this approach  and   are 

specified. The remaining unknowns are then obtained from the rest of the system.  

It is convenient at this point to introduce the choices 
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whereK and   are arbitrary constants. We have chosen the above form for the 

anisotropic factor as it providesfor a wider range of possibilities than the other 

solutions, and it does produces isotropic and anisotropic solutions which are 

necessary for a realisticmodel. 

 On using these choices, the equations (2b)-(2d)becomes  
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which is a nonlinear differential equation 

  To linearisethis equation it is now convenient to introduce the transformation 
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With this transformation, the nonlinear differential equation(3) becomes 

 

(       )
   

   
   

  

  
  (     )                                                              ( )  



5th International Symposium 2015 – IntSym 2015, SEUSL 
 

226 
 

 

Note that the Einstein system (2) implies 
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in terms of the independent variable xand dependent variable . Equation (4) is the 

second order linear differential equation in terms of the new variables   and x, and 

is the master equation for the system (2). Also the equation (4) to be solved to find 

   i.e the metric function . 

 

3. RESULTSAND DISCUSSION 

It is possible to express the solution of (4) in terms of special functions namely 

theGegenbauer functions. However that form of thesolution is not particularly useful 

because of the analytic complexity of the specialfunctions involved. In addition the 

role of parameters of physical interest, such asthe spheroidal parameter K, is lost or 

obscured in the representation as Gegenbauerfunctions. The representation of the 

solutions in a simple form is necessary for adetailed physical analysis. Consequently 

we attempt to obtain a general solution to the differential equation (4) in a series form 

using the method of Frobenius. Later we will indicate that it is possible to extract 

solutions in terms of polynomials andalgebraic functions for particular parameter 

values as demonstrated by Komathiraj and Maharaj (2010). 

As the point     is the regular point of the differential equation (4), there are two 

linearly independent solutions. Thus the general solution to (4) can be assumed by 

the method of Frobenius as  
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where   are constants. For a legitimate solution we need to determine the 

coefficients. On substituting the series (5)  in (4), we obtain after simplification  
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inincreasing powers of x. For this equation to be valid for all x in the interval 

ofconvergence we require 
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which is the  linear recurrence relation governing the structure of the solution. The 

recurrence relation consists of variable, rational coefficients. It does not fall in the 

known class of difference equations and has to be solved from first principles. It is 

possible to solve using the principle of mathematical induction. All the even 

coefficients can be written in terms of the coefficient      These coefficients generate 

a pattern 
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We can obtain a similar formula for the odd coefficients as  
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Hence the difference equation has been solved and all nonzero coefficients are 

expressible in terms of the leading coefficients   and   .  From these two patterns 

and (5) we establish that 
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Thus we have found the general series solution to the differential equation (4) for the 

choice of the one of the metric function and the anisotropic factor. The solution is 

expressed in terms of a series with real arguments unlike the complex arguments 

given by software packages. The series converge if there exists a nonnegative value 

for the radius of convergence. Note that the radius of convergence of the series is 

not less than the distance from the centre (x = 0) to the nearest root of the leading 

coefficient of the differential equation (4).  Clearly this is possible for a wide range of 

values for K.It is interesting to observe that the series in terminates for restricted 

values of theparameters    and K. This will happen when   and K  takes on specific 

integer values.Utilising this feature it is possible to generate solutions in terms of 

elementary functionsby determining the specific restriction on   and K for a 

terminating series. Solutionsin terms of polynomials and algebraic functions can be 

found. We use the recurrencerelation, rather than the series to find the elementary 

solutions as this issimpler. 

Two classes of solutions in terms of elementary functions for (4) are possible from 

the above series form.   The first category of solutions for   ( ) is given by  
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The second category of solution for   ( ) has the form 
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with the values  
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In the above two categoriesof solutions A and B are arbitrary constants.   

 

 

DISCUSSION 

One of the original reasons for studying anisotropic matter was to generate models 

that permit redshifts higher than the critical redshift of isotropic matter. Observational 

results indicate that certain isolated objects haveredshifts higher than critical 

redshiftof isotropic matter.We have found new solutions to the Einstein field 

equations for an anisotropic fluid spherebyutilizing the method of Frobenius for an 

infinite series; a particular form for one of thegravitational potentials was assumed 

and the anisotropic factor was specified. Thesesolutions are given in terms of special 

functions. For particular values of the parametersinvolved it is possible to write the 

solution in terms of elementary functions: polynomialsand products of polynomials 

and algebraic functions. The anisotropic factor   may vanishin the solutionsisotropic 

solutionscan be regained. Thus this approachhas the advantage of necessarily 

containing isotropic stellar solution.It is also important to observe that the magnitude 

of the anisotropic factor is a nonzero function in general for many solutions found 

previously. Hence this class of solutions is generally anisotropic and does not have 

an isotropic limit. An analogous situation risesin Einstein-Maxwell solutions modelling 

charged relativistic stars in whichthe electric field is always present. An example of 

such a charged star isgiven byHansraj and Maharaj (2006). The simple form of the 

solutions found facilitates the analysis of the physical features of an anisotropic fluid 

sphere. The gravitational potentials are finite at the centre r = 0 and at the boundary 

r = R. These functions are continuous and well behaved in the interior of the 

relativistic star. The radial pressure is continuous and well behaved in the interior of 

the star. Also the radial pressure is greater than zero in the interval (0, R), regular at 

the centre, and vanishes at the boundary. In general the tangential pressure is not 

zero at the boundary of the star which is different from the radial pressure. 
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4.  CONCLUSION 

The main objective of this work was to find exact solutions to the anisotropic fluid 

sphere which can be used to describe a relativistic dense star. Solutions of the 

complicated system of nonlinear partial differential equations were sought by 

specifying physically reasonable forms for one of the gravitational potentials and 

the anisotropic factor. A number simple solutions to the system, which we believe 

to be physically reasonable, were obtained explicitly in terms of elementary 

functions. It was also possible to find other categories of solutions by specifying 

other types of spatial geometries.   
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