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ABSTRACT: Multicollinearity often causes a huge explanatory problem in multiple linear 

regression analysis. In presence of multicollinearity the ordinary least squares (OLS) estimators 

are inaccurately estimated. In this paper the multicollinearity was detected by using observing 

correlation matrix, variance influence factor (VIF), and eigenvalues of the correlation matrix. The 

simulation multicollinearity data were generated using MINITAB software and make comparison 

between methods of principal component regression (PCR) and the OLS methods. According to 

the results of this study, we found that PCR method facilitates to solve the multicollinearity 

problem. 
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1.  INTRODUCTION 
 

Multiple linear regressions is a widely used statistical technique that allows us to 
estimate models that describe the distribution of a response variable with the help of 
a two or more explanatory variables. The use of multiple regression mainly regards 
the interpretation of the regression coefficients. In case of independent coefficients 
the least-squares solution gives stable estimates and useful results.  
 

Multicollinearity is a statistical phenomenon in which there exists a perfect or exact 
relationship between the predictor variables. When there is a perfect or exact 
relationship between the predictor variables, it is difficult to come up with reliable 
estimates of their individual coefficients. It will result in incorrect conclusions about 
the relationship between outcome variable and predictor variables. (Gujarat, 2004) 
 

The presence of multicollinearity has several serious effects on the OLS estimates 
of regression coefficients such as high variance of coefficients may reduce the 
precision of estimation, it can result in coefficients appearing to have the wrong 
sign, the parameter estimates and their standard errors become extremely sensitive 
to slight changes in the data points and it tends to inflate the estimated variance of 
predicted values (Montgomery, 2001). Because multicollinearity is a serious 
problem when we are working for predictive models. So it is very important for us to 
find a better method to deal with multicollinearity. 
 

A number of different techniques for solving the multicollinearity problem have been 
developed. These range from simple methods based on principal components to 
more specialized techniques for regularization (Næs and Indahl, 1998). The PCR 
method has been proposed as alternatives to the OLS estimators when the 
independent assumption has not been satisfied in the analysis. Through this study, 
we want to compare OLS and PCR methods by using Monte Carlo simulation data. 

 



5th International Symposium 2015 – IntSym 2015, SEUSL 
 

232 
 

 

2. METHODOLOGY 
 

2.2 Data 
 

In this paper, the simulation data (50 observations) were generated using Minitab 
software, where the correlation coefficients between the predictor variables are 

large ( )99.095.0   and and the number of independent variables is five. The 

simulation procedure suggested by McDonaldand Galarneau (1975) and Gibbons 
(1981) was used to generate the explanatory variables: 

  ipijij ZZX   2

1
21 pjandni ,...,2,1,...,2,1                           (1) 

Where 
ijZ are independent standard normal distribution, 2 is the correlation 

between any two explanatory variables and p is the number of explanatory 
variables.   
 

2.3 Detection of Multicollinearity 
 

2.3.1 Examination of Correlation Matrix 
 

A simple method for detecting multicollinearity is to calculate the correlation 
coefficients between any two of the explanatory variables.  A high value of the 
correlation between two variables may indicate that the variables are collinear. This 
method is easy, but it cannot produce a clear estimate of the degree of 
multicollinearity. (El-Dereny and Rashwan, 2011). The correlation coefficients are 
greater than 0.80 or 0.90 then this is an indication of multicollinearity. 
 

2.3.2 Variance Inflation Factor (VIF) 

The VIF quantifies the severity of multicollinearity in an ordinary least squares 

regression analysis. Let 
2

jR  denote the coefficient of determination when 
jX  is 

regressed on all other predictor variables in the model. The VIF is given by: 

21

1

jR
VIF


     1...3,2,1  pj                                   (2) 

The VIF provides an index that measures how much the variance of an estimated 
regression coefficient is increased because of the multicollinearity. As per practical 
experience, if any of the VIF values exceeds 5 or 10, it is an indication that the 
associated regression coefficients are poorly estimated because of multicollinearity 
(Montgomery, 2001). 
 

2.3.3 Eigen Analysis of Correlation Matrix  
 

The eigenvalues can also be used to measure the presence of multicollinearity. If 
multicollinearity is present in the predictor variables, one or more of the eigenvalues 
will be small (near to zero). 
  

Let 
p ,...,, 21
be the eigenvalues of correlation matrix. The condition number of 

correlation matrix is defined as: 

min

max




K and

j

jK


max   pj ,...,2,1                                     (3) 
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Where max  is the largest eigenvalue. 

 min is the smallest eigenvalue 

 j is the eigenvalue of jth independent variable 

If the condition number is less than 100, there is no serious problem with 
multicollinearity and if a condition number is between 100 and 1000 implies a 
moderate to strong multicollinearity. Also, if the condition number exceeds 1000, 
severe multicollinearity is indicated (Montgomery, 2001). 
 

2.4 Principal Component Regression(PCR) 
 

The PCR provides a unified way to handle multicollinearity which requires some 
calculations that are not usually included in standard regression analysis. The 
principle component analysis follows from the fact that every linear regression 
model can be restated in terms of a set of orthogonal explanatory variables. These 
new variables are obtained as linear combinations of the original explanatory 
variables. They are referred to as the principal components. 
 
Consider the following model, 

  XY                              (4) 

 
Where Y is an n x 1 matrix of response variable, X is an n x p matrix of the 

independent variables,   is a p x 1 vector of unknown constants, and  is an n x 1 

vector of random errors. 
 
There exists a matrix C, satisfying 

  1 CCCCandCXXC                              (5) 

 

Where is a diagonal matrix with ordered characteristics roots of X′X on the 

diagonal. The characteristic roots are denoted by 
p  ...,21
C may be used 

to calculate a new set of explanatory variables, namely 

             ,,2,1,,2,1 ...,..., pp XXXXCZZZZ                               (6) 

 
That are linear functions of the original explanatory variables. The Z’s are referred to 
as principal components. 
 
Thus the regression model can be restated in terms of the principal components as: 

  ZY   , where  CXCZ  ,                                     (7) 

CCCCXCXCZZ                                           (8) 

 
The least square estimator of  is 

  YZYZZZ   11
̂ and the variance covariance matrix of ̂ is 

  1212)ˆ( 
  ZZV                                             (9) 

 
Thus a small eigenvalue of X′X implies that the variance of the corresponding 
regression coefficient will be large. 
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Since  CCCCXCXCZZ , we often refer to the eigenvalues
j as the 

variance of the jthprincipal component. If all 
j equal to unity, the original regressors 

are orthogonal, while if a
j is exactly equal to zero, then it implies a perfect linear 

relationship between the original regressors. One or more near to zero implies 
thatmulticollinearity is present. 
 

The principal component regression approach combats multicollinearity by using 
less than the full set of principal components in the model. To obtain the principal 
components estimators, assume that the regressors are arranged in order of 

decreasing eigenvalues 0...,21  p . In principal components regression 

the principal components corresponding to near zero eigenvalues are removed from 
the analysis and least squares applied to the remaining components. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Detection of Multicollinearity 

The correlation matrix based on a set of simulated data are given in table 1. 
 

Table 1.  Correlation matrix of independent variables 
 

95.0
 

Variables X1 X2 X3 X4 X5 

X1 1.0000 0.9509 0.9496 0.9599 0.9384 

X2 0.9509 1.0000 0.9379 0.9460 0.9367 

X3 0.9496 0.9379 1.0000 0.9452 0.9513 

X4 0.9599 0.9460 0.9452 1.0000 0.9302 

X5 0.9384 0.9367 0.9513 0.9302 1.0000 

99.0
 

X1 1.0000 0.9876 0.9878 0.9914 0.9884 

X2 0.9876 1.0000 0.9882 0.9866 0.9821 

X3 0.9878 0.9882 1.0000 0.9871 0.9869 

X4 0.9914 0.9866 0.9871 1.0000 0.9844 

X5 0.9884 0.9821 0.9869 0.9844 1.0000 
 

Table 1 shows the correlation between independent variables are highly correlated. 
This implies that the multicollinearity exits. This results further confirmed by VIF and 
Eigen values structure and the results are given in table 2 & 3. 

Table 2. VIF values of independent variables 

 

Variables 
VIF 

95.0
 

99.0
 

X1 18.76 91.90 

X2 13.95 58.03 

X3 16.05 68.85 

X4 16.21 71.80 

X5 13.14 54.28 
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Table 2shows the VIF of each independent variables is greater than 10 in two 

different correlation coefficients which implies that the multicollinearity exist. 

Table 3. Results of Eigen analysis 
 

Variables 
95.0

 
99.0

 

j  
Kj 

j  
Kj 

X1 4.7785 1.00 4.9482 1.00 

X2 0.0796 60.06 0.0183 270.72 

X3 0.0593 80.65 0.0150 328.94 

X4 0.0434 110.03 0.0108 456.77 

X5 0.0392 121.76 0.0076 649.00 
 

From the table 3, the corresponding condition indices are large in two different data. 
This indicates that there is multicollinearity exist.   
 
According to the above results, there is multicollinearity exist in the independent 
variables. The OLS estimates of two different types of multicollinearity data are 
given in table 4. 

Table 4. Results of multiple regression models 
 

Variable
s 

95.0
 

99.0
 

̂
 

SE of  

̂
 

t-
values 

p-
values 

̂
 

SE of  

̂
 

t-
values 

p-values 

C -0.012 0.050  -0.24 0.815 -0.005 0.024 -0.19 0.849 

X1 0.361  0.166  2.17 0.035 0.435 0.170  2.55 0.014 

X2 -0.090 0.154 -0.58 0.513 0.196 0.138  1.42 0.163 

X3 0.358 0.153 2.34 0.024 0.069  0.144  0.48 0.632 

X4 0.325  0.155  2.10 0.042 0.374  0.147  2.54 0.015 

X5 0.024  0.129  0.19 0.853 -0.084 0.147  -0.64 0.527 

          S = 0.3321     R-Sq(adj) = 92.9%                
         F=75.80 (0.000) 

  S = 0.1541      R-Sq(adj) = 98.5%                       
     F=626.25(0.000) 

 

Table 4 shows the overall models of both simulated data is significant at 5% 
significance level. However, only three independent (X1, X3, and X4) variables are 
statistically significant in the first model and two independent (X1 and X4) variables 
are statistically significant in the second model and the other variables are not 
statistically significant because of multicollinearity. 

 

3.2 Principal Component Regression 

The principal components technique can be used to reduce multicollinearity in the 
estimation data. The reduction is accomplished by using less than the full set of 
principal components to explain the variation in the response variable. 

 

Table 5.Eigenvalues and eigenvectors  95.0  

 

Variables 
Eigenvalues of the Correlation Matrix 

Eigen value Difference Proportion Cumulative 

X1 4.7785 4.6989 0.9557 0.9557 
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X2 0.0796 0.0203 0.0159 0.9716 

X3 0.0593 0.0158 0.0119 0.9835 

X4 0.0434 0.0042 0.0087 0.9922 

X5 0.0392  0.0078 1.0000 

Eigenvectors 

Variables Z1 Z2 Z3 Z4 Z5 

X1 0.4491 -0.3109 -0.1826 0.1943 -0.7942 

X2 0.4465 -0.2756 0.7819 -0.3206 0.1028 

X3 0.4477 0.3518 -0.4251 -0.7024 0.0411 

X4 0.4475 -0.4616 -0.3686 0.3119 0.5946 

X5 0.4451 0.7004 0.1975 0.5185 0.0592 

 
From the table 5, the principal components of the explanatory variables are: 
 

543211 4451.04475.04477.0X0.44654491.0 XXXXZ   

 

543212 7004.04616.03518.0X2756.03109.0 XXXXZ   

 

543213 1975.03686.04251.0X0.78191826.0 XXXXZ   

 

543214 5185.03119.07024.0X0.32061943.0 XXXXZ   

 

543215 0592.05185.01975.0X0.70044451.0 XXXXZ   
 

Then the model can be written in the form of principal components as: 
 

  5544332211 Z ZZZZY  (10) 

 
Also table 5 indicates that the first component accounts for 95.57 % of the variance. 
All remaining components are not significant. Hence, the first component has been 
chosen. Then the linear regression of Y against Z1is given by. 
 

  11 ZY                                (11) 

 
The estimated value of  can be obtaining by the equation (11) and the results are 

given in table 6. 
 

Table 6. Results of principal component regression ( 95.0 ) 

Variables ̂  SE of  ̂  t-values p-values VIF 

C -0.02397 0.0485 -0.49 0.624 - 

Z1 0.4419 0.0181 24.46 0.000 1.000 

 
S = 0.3425R-Sq = 92.6%   R-Sq(adj) = 92.4%  F=598.09(0.000) 
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According to the table 6, selecting a model based on first principal component Z1 
has removed the multicollinearity.   

 

Table 7.   Eigenvalues and eigenvectors  99.0  

 

Variables 
Eigenvalues of the Correlation Matrix 

Eigen value Difference Proportion Cumulative 

X1 4.9482 4.9299 0.9896 0.9896 

X2 0.0183 0.0032 0.0037 0.9933 

X3 0.0150 0.0042 0.0030 0.9963 

X4 0.0108 0.0032 0.0022 0.9985 

X5 0.0076  0.0015 1.0000 

Eigenvectors 

Variables Z1 Z2 Z3 Z4 Z5 

X1 0.4479 0.0659 -0.4109 0.2117 -0.7625 

X2 0.4469 -0.6026 0.3569 0.5314 0.1654 

X3 0.4474 -0.0455 0.5082 -0.7038 -0.2104 

X4 0.4473 -0.1886 -0.6405 -0.3165 0.5038 

X5 0.4466 0.7713 0.1874 0.2701 0.3052 

 
From the table 7, the principal components of the explanatory variables are: 
 

543211 4466.04473.04474.0X0.44694479.0 XXXXZ 
 

 

543212 7713.01886.00455.0X6026.00659.0 XXXXZ 
 

 

543213 1874.06405.05082.0X0.35694109.0 XXXXZ 
 

 

543214 2701.03165.07038.0X5314.02117.0 XXXXZ 
 

 

543215 3052.05038.02104.0X0.16547625.0 XXXXZ 
 

 
Then the model can be written in the form of principal components as: 
 

  5544332211 Z ZZZZY                     (12) 

 
Also table 7 indicates that the first component accounts for 98.96 % of the variance. 
All remaining components are not significant. Hence, the first component has been 
chosen. Then a linear regression of Y against Z1 is given by. 

  11 ZY                         (13) 

 
The estimated value of  can be obtaining by the equation (13) and the results are 

given in table 8. 

 



5th International Symposium 2015 – IntSym 2015, SEUSL 
 

238 
 

Table 8. Results of principal component regression ( 99.0 ) 

Variables ̂  SE of  ̂  
t-values p-values VIF 

C 0.0045 0.0229 0.19 0.847 - 

Z1 0.4439 0.0083 53.26 0.000 1.000 

 
S = 0.1617  R-Sq = 98.3%   R-Sq(adj) = 98.3%  F= 2836.87(0.000) 

 

 
According to the table 8, selecting a model based on first principal component Z1 
has removed the multicollinearity.   

 

 
4. CONCLUSIONS   
 

Multicollinearity often causes a huge explanatory problem in multiple linear 
regression analysis. When multicollinearity is present in the data, ordinary least 
square estimators are inaccurately estimated. If the goal is to understand how the 
various X variables impact Y, then multicollinearity is a big problem. According to 
the results of this study the multicollinearity was detected using examination of 
correlation matrix, calculating the variance inflation factor (VIF), Eigen value 
analysis and the remedial measures of principal component analysis helps to solve 
the problem of multicollinearity. 
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